Смекни!
smekni.com

Технология ADSL (стр. 4 из 19)


Рисунок 10. Отклик на импульс, посылаемый по каналу.

Данный эффект (в следствии частотной зависимости функции передачи по каналу) приводит к тому, что называется межсимвольной интерференцией (ISI). В линейных каналах, имеющих частотные ограничения и зависимые от частоты затухание и задержку, возникает дисперсия импульсов, которая приводит к ошибкам в процессе детектирования. Этот эффект сильнее всего сказывается на коротких импульсах, что приводит к ограничениям для высокоскоростных систем. ISI может быть частично компенсирована с помощью адаптивных канальных компенсаторов. Необходимо впрочем отметить, что компенсация представляет из себя усиление и, таким образом имеет пределы, связанные с качеством принимаемого сигнала (шум, …).

Отражения

Отражения в кабеле могут возникнуть в следствии рассогласования приемопередатчика и изменения диаметра кабеля.

Шум и интерференция

Здесь оговариваются наиболее важные источники шума и интерференции, которые оказывают влияние на медную витую пару.

Белый шум

Белый шум имеет много причин появления и полностью подавить его практически невозможно. Это означает, что даже если изолировать все источники шума и интерференции все равно белый шум будет ограничивать производительность системы.

Переходные помехи

Переходные помехи вносят наиболее серьезные ограничения в абонентский участок сети. Суть данного явления заключается в емкостной связи между парами кабеля. Переходные помехи могут быть на ближнем конце (Near End CROSSTalk – NEXT) и на дальнем конце (Far End CROSSTalk – FEXT). Они приведены на рисунке 11.

· NEXT определяются, как переходные помехи между принимающей и передающей парой на одном конце кабеля.

· FEXT определяются как переходные помехи в приемнике в следствии влияния передатчика, работающего по другой паре кабеля на удаленном от приемника конце.

Необходимо отметить, что влияющая помеха при FEXT, в отличии от NEXT, проходя по линии связи, затухает также, как и передаваемый сигнал. Таким образом, в случае, если сигналы передаются в обоих направлениях, по одному кабелю NEXT будет значительно больше FEXT. Если сигналы используют общую полосу частот, например, в случае использования эхо компенсации, NEXT будет вносить наибольший вклад в переходные помехи. Также NEXT будет выше при использовании близко расположенных модемов. Это означает, что NEXT более важен в месте расположения ADSL -мультиплексора.

Рисунок 11. Переходные помехи на дальнем конце (FEXT) и ближнем конце (NEXT).

Собственные переходные помехи

Помимо переходных помех, описанных ранее, существуют и так называемые собственные переходные помехи. В действительности данный тип помехи не является переходным, поскольку не является помехой между приемником и передатчиком. Данный тип помехи вызван не полным разделением направлений приема и передачи в дифсистеме, а также является следствием не идеального согласования приемника и передатчика. Затухание на линии может достигать 55 дБ, поэтому для того, чтобы принять сигнал с уровнем, более высоким, чем у собственной переходной помехи, дифсистема должна обеспечивать затухание не хуже, чем 55 дБ.

Рисунок 12. Собственная переходная помеха.

Как и в случае NEXT, данная проблема существует, только при передаче и приеме сигналов в одном частотном диапазоне, например при использовании эхо компенсации.

Радиочастотная интерференция

Сеть доступа подвергается действию широкого спектра радиочастотной интерференции (Radio Frequency Interference – RFI), например от длинноволновых или средневолновых широковещательных передатчиков (См. рисунок 13). Несмотря на то, что медная витая пара, как правило, хорошо симметрирована и поэтому мало подвержена данному явлению (Обычно RFI более подвержены сельские сети с воздушными кабелями), должны быть предусмотрены средства, защищающие системы передачи от RFI. Необходимо отметить, что исходя из требований по электромагнитной совместимости (Electro-Magnetic Compatibility - EMC) системы передачи (ADSL) не должны быть подвержены интерференции с радиопередающим оборудованием. Данный факт также накладывает ограничения на мощность, передаваемого по линии сигнала.

Важное преимущество одного из методов модуляции, используемых в ADSL - DMT заключается в том, что он удовлетворяет как требованиям по устойчивости к радиочастотной интерференции, так и создаваемым магнитным полям.

Рисунок 13. Радиочастотная интерференция.

Импульсный шум

Данное явление характеризуется редкими шумовыми выбросами большой амплитуды, причиной которых может быть коммутационные станции, импульсный набор, вызывной сигнал, близость железнодорожных станций, заводов и т.п. Характеристики импульсного шума зависят от типа используемой станции, и таким образом специфичны для каждой страны. Поскольку выбросы имеют острую форму, спектр импульсного шума ровный в диапазоне ADSL сигналов (максимальная частота ADSL сигнала составляет 1 МГц).

1.4. Решения ADSL проблем

Разделение передаваемых и принимаемых данных

При использовании ADSL данные передаются по общей витой паре в дуплексной форме. Для того, чтобы разделить передаваемый и принимаемый поток данных существуют два метода: частотное разделение каналов (Frequency Division Multiplexing – FDM) и эхо компенсация (Echo Cancelation – EC) (смотри рисунок 14).

Рисунок 14. Разделение направлений передачи и приема данных.

Частотное разделение каналов

При использовании данного механизма низкоскоростной канал передаваемых данных располагается сразу после полосы частот, используемой для передачи аналоговой телефонии. Высокоскоростной канал принимаемых данных располагается на более высоких частотах. Полоса частот зависит от числа бит передаваемых одним сигналом.

Эхо компенсация

Данный механизм позволяет низкоскоростному каналу передаваемых данных и высокоскоростному каналу принимаемых данных располагаться в общем частотном диапазоне, что позволяет более эффективно использовать низкие частоты, на которых затухание в кабеле меньше.

Сравнение

· Эхо компенсация позволяет улучшить производительность на 2 дБ, однако является более сложной в реализации

· Преимущества EC растут при использовании более высокоскоростных технологий, таких как ISDN или видеотелефония на скорости 384 кбит/с. В этих случаях FDM требует выделения под высокоскоростной канал принимаемых данных более высоких частот, что приводит к увеличению затухания и сокращению максимального расстояния передачи.

· Совмещение двух каналов в одном частотном диапазоне, при использовании ЕС приводит к появлению эффекта собственного NEXT, который отсутствует при использовании FDM.

· Стандарт ADSL предусматривает взаимодействие между различным оборудованием, использующим как механизм FDM, так и EC, выбор конкретного механизма определяется при установлении соединения.

Заключение

При отсутствии интерференции с другими службами, приемопередатчик, использующий ЕС функционирует лучше. На скорости в 1,5 Мбит/с, разница в максимальном расстоянии составляет 16% в пользу ЕС, однако на скорости 6 Мбит/с разница падает до 9%.

При учете собственной переходной помехи (т.е. в случае использования данного кабеля другими системами ADSL) приемопередатчик, использующий FDM функционирует лучше на скоростях выше 4,5 Мбит/с. Это связано с тем, что приемопередатчик с FDM ограничен лишь наличием эффекта FEXT, тогда как приемопередатчик, использующий механизм EC подвержен влиянию как FEXT, так и собственного NEXT. Обычно модемы располагаются близко друг от друга на входе ADSL -мультиплексора, в этом случае наибольшее значение имеет параметр NEXT, именно поэтому предпочтение отдается механизму FDM.

Методы передачи

Введение

Одним из наиболее важных вопросов при стандартизации систем передачи является вопрос выбора типа используемой модуляции. В процессе стандартизации ADSL, ANSI определил три потенциальных типа модуляции:

· Квадратурная амплитудная модуляция (Quadrature Amplitude Modulation - QAM)

· Амплитудно-фазовая модуляция с подавлением несущей (Cariereless Amplitude/Phase Modulation – CAP)

· Дискретная многотональная модуляция (Discrete MultiTone Modulation – DMT)

Исследования показали, что наиболее производительной является DMT. В марте 1993 года рабочая группа ANSI T1E1.4 определила базовый интерфейс, основанный на методе DMT. Позднее ETSI также согласился стандартизовать DMT для применения в ADSL.

Квадратурная амплитудная модуляция

Для передачи в одной полосе частот, обычным методом является амплитудная модуляции (Pulse Amplitude Modulation – PAM), которая заключается в изменении амплитуды дискретными шагами. QAM использует модуляцию двух параметров – амплитуды и фазы. В данном случае для кодирования трех старших бит используется относительная фазовая модуляция, а последний бит кодируется выбором одного из двух значений амплитуды для каждого фазового сигнала.


Теоретически количество бит на символ можно увеличивать, путем повышения разрядности КAM. Однако при увеличении разрядности становится все сложнее и сложнее детектировать фазу и уровень. В таблице 1.3 представлены требования к SNR (отношение сигнал/шум) для КAM различной разрядности, с коэффициентом ошибок по битам BER£ 10-7.