Смекни!
smekni.com

Интеллектуальные информационные системы 3 (стр. 2 из 10)

Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации.

Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.

1.3. Экспертные системы

Назначение экспертных систем заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Достоинство применения экспертных систем заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решение задач предполагается осуществлять в условиях неполноты, недостоверности, многозначности исходной информации и качественных оценок процессов.

Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:

· консультанта для неопытных или непрофессиональных пользователей;

· ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений;

· партнера эксперта по вопросам, относящимся к источникам знаний из смежных областей деятельности.

Экспертные системы используются во многих областях, среди которых лидирует сегмент приложений в бизнесе (рис. 1.2) [ 21 ].

Рис. 1.2. Области применения экспертных систем

Архитектура экспертной системы (рис.1.3) включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса. Причем центральным компонентом экспертной системы является база знаний, которая выступает по отношению к другим компонентам как содержательная подсистема, составляющая основную ценность. “Know-how” базы знаний хорошей экспертной системы оценивается в сотни тысяч долларов, в то время как программный инструментарий - втысячи или десятки тысяч долларов.

База знаний - это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и, возможно, неопределенностей, с которыми эти действия осуществляются.

Рис.1.3 Архитектура экспертной системы

В качестве методов представления знаний чаще всего используются либо правила, либо объекты (фреймы), либо их комбинация. Так, правила представляют собой конструкции:

Если < условие >

То <заключение> CF (Фактор определенности) <значение>

В качестве факторов определенности (CF), как правило, выступают либо условные вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой логики (от 0 до 100). Примеры правил имеют следующий вид:

Правило 1: Если Коэффициент рентабельности > 0.2

То Рентабельность = "удовл." CF 100

Правило 2: Если Задолженность = "нет" и Рентабельность = "удовл."

То Финансовое_сост. = "удовл." CF 80

Правило 3: Если Финансовое_сост. = "удовл." и Репутация="удовл."

То Надежность предприятия = "удовл." CF 90

Объекты представляют собой совокупность атрибутов, описывающих свойства и отношения с другими объектами. В отличие от записей баз данных каждый объект имеет уникальное имя. Часть атрибутов отражают типизированные отношения, такие как “род - вид” (super-class - sub-class), “целое - часть” и др. Вместо конкретных значений атрибутов объектов могут задаваться значения по умолчанию (указатель наследования атрибутов устанавливается в S), присущие целым классам объектов, или присоединенные процедуры (process). Пример описания объектов представлен на рис. 1.4.

Интеллектуальный интерфейс.Обмен данными между конечным пользователем и ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результата обработки в формат пользователя и выдает сообщение на требуемый носитель. Важнейшим требованием к организации диалога пользователя с ЭС является естественность, которая не означает буквально формулирование потребностей пользователя предложениями естественного языка, хотя это и не исключается в ряде случаев. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах.

Механизм вывода. Этот программный инструмент получает от интеллектуального интерфейса преобразованный во внутреннее представление запрос, формирует из базы знаний конкретный алгоритм решения задачи, выполняет алгоритм, а полученный результат предоставляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя.

ПРЕДПРИЯТИЕ_ОТРАСЛИ#1

Имя слота Указатель наследования Тип Значение
Super-сlass U FRAME ROOT
Sub-сlass U FRAME Предприятие
Код предприятия U String 101
Код отрасли U String 123
Отраслевойкоэфф. рент. U Real 20

ПРЕПРИЯТИЕ#1

Имя слота Указатель наследования Тип Значение
Super-сlass S FRAME Предприятиеотрасли
Sub-сlass - - -
Код предприятия S String 101
Код отрасли S String 123
Отраслевойкоэфф. рент. S Real 20
Коэфф. рент. Real 25
Задолженность String Нет
Репутация String Удовл
Фин.состояние Process Fin_sost
Надежность Process Nad

Рис. 1.4. Описание объектов

В основе использования любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных) относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая (рис. 1.5) или обратная (рис. 1.6) цепочка рассуждений.

Для объектно-ориентированного представления знаний характерно применение механизма наследования атрибутов, когда значения атрибутов передаются по иерархии от вышестоящих классов к нижестоящим (например, на рис.1.4. код отрасли, отраслевой коэффициент рентабельности). Также при заполнении атрибутов фрейма необходимыми данными запускаются на выполнение присоединенные процедуры.

Рис. 1.5. Прямая цепочка рассуждений

Рис. 1.6. Обратная цепочка рассуждений

Механизм объяснения.В процессе или по результатам решения задачи пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна предоставить соответствующий механизм объяснения. Объяснительные способности ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда на вопросы пользователя "Как?" и "Почему?" получено решение или запрошены те или иные данные система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая выдачу объяснения заранее подготовленными комментариями. В случае отсутствия решения задач объяснение должно выдаваться пользователю автоматически. Полезно иметь возможность и гипотетического объяснения решения задачи, когда система отвечает на вопросы, что будет в том или ином случае.

Однако, не всегда пользователя может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя. Если же пользователь продолжает не понимать полученный ответ, то система должна быть способна в диалоге на основе поддерживаемой модели проблемных знаний обучать пользователя тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались.