Смекни!
smekni.com

Основы информатики 3 2 (стр. 20 из 43)

Цветное изображение с помощью лазерного принтера получается по стандартной схеме CMYK, используемой в струйных принтерах. В цветном лазерном принтере изображение формируется на светочувствительной фотоприемной ленте последовательно для каждого цвета. Имеются четыре емкости для тонеров и от двух до четырех узлов проявления. Лист печатается за четыре прохода, что существенно сказывается на скорости печати. Цветные лазерные принтеры оборудованы большим объемом памяти, процессором и, как правило, собственным винчестером. На винчестере располагаются разнообразные шрифты и специальные программы, которые управляют работой, контролируют состояние и оптимизируют производительность принтера. В результате цветные лазерные принтеры достаточно сложны и дорогостоящи.

Таким образом, лазерный черно-белый принтер рекомендуется использовать для получения высококачественной черно-белой распечатки, а для цветного изображения оптимальным является применение цветного струйного принтера.

Термические принтеры

Термические принтеры – цветные принтеры высокого класса – применяются для получения цветного изображения с качеством, близким к фотографическому. Их применение весьма ограничено.

В термических принтерах используют три технологии цветной термопечати: струйный перенос расплавленного красителя (термопластичная печать); контактный перенос расплавленного красителя (термовосковая печать) и термоперенос красителя (сублимационная печать).

Термопластичная печать, или технология Phast Change Ink-Jet, основана на получении изображения нанесением на бумагу капель расплавленного воскообразного красителя. Для этого восковые стерженьки для каждого первичного цвета красителя постепенно расплавляются при температуре 90 градусов специальным нагревательным элементом. Расплавленные красители попадают в отдельные резервуары, откуда подаются насосом в пьезоэлектрическую печатающую головку. Капли воскообразного красителя мгновенно застывают на бумаге, обеспечивая хорошее сцепление. Термопластичная печать исключает просачивание и растекание красителей, что позволяет получить высокое качество изображения, невысокую стоимость одной копии даже при двухсторонней печати. Однако скорость печати невысока.

Термовосковая печать, или технология Termal Wax Transfer, реализуется в принтерах с термопереносом. Принцип действия такого принтера в том, что термопластичное красящее вещество, представляющее собой краситель, растворенный в воске, наносится на тонкую лавсановую пленку толщиной 5 мкм. Пленка перемещается лентопротяжным механизмом, конструкция которого аналогична конструкции лентопротяжного механизма матричного принтера. На бумагу краситель переносится в том месте, где нагревательными элементами (аналогами сопел в струйных принтерах и игл в матричных) обеспечивается температура 70-80 градусов. Для получения цветного изображения применяется метод CMYK, т.е. выполняются четыре прохода: по одному проходу для нанесения каждого первичного цвета и один – для черного цвета. В связи с этим скорость цветной печати принтеров с термопереносом 1...2 страницы в минуту. Стоимость выведенной на печать страницы с изображением выше, чем у струйных принтеров, поскольку используется специальная бумага. Преимуществом принтеров с термопереносом является получение высококачественных цветных изображений с воспроизведением до 16,7 млн цветов как на бумаге, так и на пленке.

Сублимационная печать основана на сублимации, т. е. на переходе вещества из твердого состояния в газообразное, минуя жидкую фазу. Технология сублимационной печати достаточно близка к технологии термопереноса. Принципиальным отличием является нагрев элементов печатающей головки до температуры 400 "С. Красящее вещество сублимирует с подложки и осаждается на бумаге или ином носителе. Комбинацией цветов красителей по методу CMYK достигается цветовая палитра фотографического качества. Широкое применение термических принтеров с сублимационной технологией ограничивается высокой стоимостью каждой копии изображения.

К числу самых известных производителей сублимационных принтеров относят Mitsubishi, Toshiba, Sony.

Плоттеры

Плоттер – устройство вывода из ЭВМ графической информации типа чертежей, схем, рисунков, диаграмм на бумажный или иной вид носителя. Помимо обычной бумаги для плоттеров используются носители в виде специальной пленки, электростатической или термореактивной бумаги.

Благодаря появлению первых перьевых плоттеров, разработанных фирмой CalComp в 1959 г., стало возможным автоматизированное проектирование, создание САПР в различных областях деятельности.

Современные плоттеры – широкий класс периферийных устройств для вывода графической информации, которые можно классифицировать по ряду признаков.

По принципу формирования изображения:

‒ плоттеры векторного типа, в которых пишущий узел относительно носителя перемещается по двум координатам;

‒ плоттеры растрового типа, в которых пишущий узел перемещается относительно носителя только в одном направлении и изображение формируется из последовательно наносимых точек.

Конструктивно, в зависимости от вида носителя, плоттеры разделяются на планшетные и рулонные.

В планшетных плоттерах носитель размещается неподвижно на плоскости, над которой располагается конструкция, позволяющая перемещать пишущий блок одновременно по двум координатам. Пишущий блок укреплен на траверсе и перемещается в горизонтальном направлении относительно планшета, на котором закреплен носитель. В свою очередь, траверса с пишущим элементом перемещается в вертикальном направлении по другой траверсе. Перемещения осуществляются через блочно-тросовые системы, ходовые винты и зубчатые рейки двумя реверсивными двигателями, один из которых установлен на траверсе, а другой – на планшете.

В рулонных плоттерах носитель размещается на барабане, который приводится во вращение в обе стороны реверсивным двигателем, а пишущий блок, приводимый в движение шаговым двигателем, перемещается по направляющей вдоль оси барабана.

Несмотря на то что принципиально планшетные плоттеры могут обеспечивать более высокую точность вывода информации, на рынке больших плоттеров (формата А0 и А1) преобладают рулонные плоттеры, поскольку их характеристики удовлетворяют требованиям большинства задач.

Дополнительные преимущества рулонных плоттеров следующие: они более компактны и удобны, работают с чертежами очень большой длины (более 10 м) или выводят несколько десятков чертежей один за другим, автоматически отматывая и отрезая от рулона лист необходимого размера. Плоттеры малого формата (A3) обычно планшетные.

В зависимости от типа пишущего блока плоттеры подразделяются:

‒ на перьевые, ПП (Pen Plotter);

‒ струйные, СП (Ink-Jet Plotter);

‒ электростатические, ЭП (Electrostatic Plotter);

‒ прямого вывода изображения, ПВИ (Direct Imaging Plotter);

‒ лазерные, ЛП (Laser/ LED Plotter).

Перьевые плоттеры являются электромеханическими устройствами векторного типа и создают изображение при помощи пишущих элементов, обобщенно называемых перьями. Пишущие элементы отличаются один от другого используемым типом жидкого красителя (одноразовые и многоразовые; шариковые, фибровые, пластиковые; с чернилами на водной или масляной основе; заполненные под давлением) и крепятся в держателе пишущего узла, который имеет одну степень свободы перемещения в рулонных плоттерах и две степени свободы перемещения в планшетных.

Отличительной особенностью ПП является высокое качество получаемого изображения, в том числе цветного при использовании цветных пишущих элементов. С помощью ПП традиционно выводят графические изображения, получаемые в системах автоматизированного проектирования, например в AutoCAD. Скорость вывода информации в ПП невысока, поэтому производители плоттеров используют все более быструю механику, пытаясь одновременно оптимизировать процедуру рисования, количество перемещений пишущего узла и бумаги, число смен пера и остановок.


20. Устройства для передачи компьютерных данных на большие расстояния

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи.

Кроме одноканальных адаптеров используются и многоканальные устройства - мультиплексоры передачи данных или просто мультиплексоры.

Мультиплексор передачи данных — устройство сопряжения ЭВМ с несколькими

каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки данных — первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появлении сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи не -обходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из канала связи в ЭВМ выполнить обратное действие — преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специальное устройство — модем.