Смекни!
smekni.com

Промышленные контроллеры, их понятие и сущность (стр. 3 из 4)

Прямой(замыкающий)

Обратный контакт(размыкающий)

Контакт с обнаружением нарастания фронта

Контакт с обнаружением падающего фронта

Используется несколько типов обмоток:

Прямая обмотка

Обратная обмотка

Логически последовательное (И), параллельное (ИЛИ) соединение контактов и инверсия (НЕ) образуют базис Буля. В результате LD идеально подходит не только для построения релейных автоматов, но и для программной реализации комбинационных логических схем. Благодаря возможности включения в LD функций и функциональных блоков, выполненных на других языках, сфера применения языка практически не ограничена.

Типовой пример использования – реализация аварийных блокировок системы, включающая преимущественно логические сигналы. Вполне приемлем в случаях, когда задачей предполагаются частные коррекции несложного логического алгоритма неквалифицированным (с точки зрения программирования) персоналом (ремонтники, механики и т.п.).

5. Функциональные диаграммы FBD

FBD (Function Block Diagram) — это графический язык программирования. Диаграмма FBD очень напоминает принципиальную схему электронного устройства на микросхемах. Позволяет создать программную единицу практически любой сложности на основе стандартных кирпичиков (арифметические, тригонометрические, логические блоки, PID-регуляторы, блоки, описывающие некоторые законы управления, мультиплексоры и т.д.). Это языковое средство использует технологию инкапсуляции алгоритмов обработки данных и законов регулирования. Все программирование сводится к "склеиванию" готовых компонентов. В результате получается максимально наглядная и хорошо контролируемая программная единица.

Этот язык позволяет пользователю строить сложные процедуры обработки данных и управления объектами. В языке используются существующие библиотеки функций и связывание их в функциональную схему или диаграмму решающую данную задачу. Основной формой представления функциональных блоков являются следующие изображения.

Входные и выходные переменные присоединяются к блоку линиями соединения. Входные и выходные переменные присоединяются к блоку линией. Выходная функция блока может быть присоединена к входу любого другого блока.

Типовой пример использования – алгоритмы регулирования, обработка (например, фильтрация) аналоговых сигналов. В качестве пользователей предполагаются специалисты в области автоматического регулирования с привлечением квалифицированных системных программистов в сложных случаях.

Основные недостатки МЭК 61131.

Даже при первом взгляде виден перекос в выборе языков. С одной стороны, в стандарт попадает ассемблер (IL), с другой стороны, чрезвычайно мощная ветка т.н. языков машин конечных состояний FSM оказывается за рамками рассмотрения. Другим, некорректным и дезориентирующим пользователей, решением МЭК стала группировка языков в едином стандарте, что в корне отличается от общепринятых подходов к стандартизации языков программирования. Третьим, технически слабым, местом стандарта стало исключение вопросов унифицированного представления графических языков стандарта, что автоматически обусловило проблемы совместимости продуктов разных производителей. Кроме этого, в стандарте МЭК61131-3 не рассматривается вопрос привязки алгоритма к интерфейсной аппаратуре, которая с необходимостью присутствует в любой системе управления.

Возможные альтернативы стандарту МЭК61131-3.

В качестве альтернативы можно попытаться использовать средства, встроенные в SCADA-системы.

Разумеется, такое решение допустимо лишь в некритичных задачах супервизорного контроля. В большинстве случаев штатная эксплуатация систем управления не предусматривает наличие средств проектирования алгоритмов. Стандартный подход – это создание базового алгоритма с возможностью его настройки через ограниченное число доступных пользователю параметров. Это позволяет проектировать базовый алгоритм управления квалифицированными специалистами и адекватными языковыми средствами, а сопутствующую этому сложность “скрывать” за дружественным интерфейсом оператора, который создается, например, с помощью тех же SCADA-пакетов.

В принципе, допустимо решение об использовании для задач управления языков Си/Си++. Такой подход может быть оправдан при наличии штата квалифицированных специалистов, отлаженной культуре разработки ПО и больших объемах тиражируемых изделий. Си++ предоставляет хорошие возможности для адаптации языка к широкому спектру задач, так что создание паттернов и набора классов, ориентированных на приведенную выше специфику, вполне осуществимо. Однако при использовании алгоритмического языка для задач автоматизации невозможно обеспечить должный уровень контроля корректности программ, ее семантическую целостность. Сложность подхода – высокие квалификационные требования к программистам, существенные затраты на обеспечение надежности и низкая сопровождаемость программ, трудности с вовлечением в процесс разработки конечного пользователя.

Достаточно популярно в России обсуждение т.н. switch-технологии. В основе подхода лежит известная реализация конечного автомата, в котором состояния автомата (некий набор функций) пронумерованы, а номер текущего состояния хранится в выделенной ячейке памяти. Текущая функция определяется через Си-конструкцию табличного выбора switch (этот факт и был использован при выборе названия). Дополнительно к этой базе предлагается набор приемов по разработке алгоритма, его отладке, специфицируется идентификационная система для переменных. Подход обеспечивает цикличность, логический параллелизм, достаточную свободу в организации вычислений и, несомненно, имеет право на рассмотрение как вариант “пишу на Си”. Switch-подход успешно используется в учебном процессе. К сожалению, подход нуждается в проработке методов синхронизации, структуризации и абстрагирования.

Особый интерес вызывает работа над стандартом МЭК-61499, в котором разработчики предприняли попытку преодолеть ограничения языков МЭК61131-3 и скомбинировать в одном языковом средстве и поддержку логического параллелизма, и поддержку событийности. Цель стандарта – предоставить методологию разработки сложных алгоритмов. Программные компоненты представлены функциональными блоками специального вида: кроме обычных для языка FBD входных и выходных данных, интерфейс функционального блока стандарта МЭК-61499 предполагает событийные входы/выходы. Несомненно, это нововведение частично решает проблему событийности для классических функциональных блоков. К сожалению, этот несомненно прогрессивный стандарт не поддержан ведущими производителями ПЛК, и известные в настоящий момент реализации стандарта носят скорее исследовательский характер.

Для преодоления ограничений языков МЭК61131-3 на сложность алгоритма и недостатков прямого Си подхода в Институте автоматики и электрометрии СО РАН был разработан специализированный язык программирования Reflex, который также может рассматриваться в качестве варианта. По своим свойствам язык вполне конкурентоспособен. При его разработке ставилась цель легкости освоения, сопровождения и соответствия задачам автоматизации.

Язык Reflex выполнен как диалект Си, что обеспечивает его легкое освоение. В проекте Reflex язык Си расширен понятием процесса – циклически исполняемой, параллельной сущности. Программа описывается как совокупность взаимодействующих процессов. Процессы можно запускать, останавливать, проверять их текущее состояние. Поэтому язык Reflex иногда называют “Си с процессами”. Предусмотрена гибкая структуризация алгоритма управления. Событийность алгоритма обеспечивается через механизм состояний процесса. Синтаксис Си расширен средствами синхронизации. При программировании на языке Reflex пользователь освобожден от рутинных действий и может полностью сконцентрировать свое внимание на сути создаваемого алгоритма. Математическая модель программы терминологически ориентирована на современные тенденции в образовании, что позволяет снять психологические проблемы при освоении методики.

Язык (используется с 1990 г.) прошел серьезную проверку в серии проектов. В частности, в задаче автоматизации выращивания монокристаллического кремния, предполагающей работу с типичными для промышленной автоматизации устройствами (сетевые интеллектуальные датчики, 4-координатную систему перемещений, приводы, дублированную газовакуумную станцию, систему охлаждения, термосистему, контроль и упреждение аварийных ситуаций, набор аналоговых и дискретных входов).

Заключение

Несмотря на недостатки, существуют вполне определенные ситуации, когда языки МЭК 61131-3 могут быть использованы на практике. В относительно простых задачах, не предъявляющих строгих требований по надежности, языки МЭК могут оказаться экономически эффективными. Даже в ситуации, когда языки МЭК слабо подходят для практической задачи, отказ от их использования совсем не очевиден. В первую очередь, это вызвано тем обстоятельством, что конечному пользователю или системному интегратору тяжело конкурировать с мега-корпорациями, разрабатывать и поддерживать альтернативные решения. Ведь, кроме собственно языка, в среду разработки входит набор вспомогательных программ и библиотек, существенно облегчающих работу по тестированию и настройке системы. Поэтому, несмотря на недостатки, языки МЭК 61131-3 вполне допустимо использовать.