Смекни!
smekni.com

Квантовые вычисления (стр. 5 из 6)

Ричард Фейнман был среди первых, кто осознал потенциал, заложенный в явлении квантовой суперпозиции для решения таких задач гораздо быстрее. Например, система из 500 кубитов, которую практически невозможно промеделировать классически, представляет собой квантовую суперпозицию из 2500 состояний. Каждое значение такой суперпозиции классически эквивалентно списку из 500 единиц и нулей. Любая квантовая операция над такой системой, например, настроенный определенным образом импульс радиоволн, который может выполнить операцию управляемое НЕ над, скажем, 100-м и 101-м кубитом, будет одновременно воздействовать на 2500состояний. Таким образом, за один тик компьютерных часов квантовая операция вычисляет не одно машинное состояние, как обычные компьютеры, а 2500состояний сразу! Однако, в конце концов, над системой кубитов производится измерение, и система коллапсирует в единственное квантовое состояние, соответствующее единственному решению задачи, единственному набору из 500 единиц и нулей, как это диктуется измерительной аксиомой квантовой механики. Это поистине волнующий результат, поскольку это решение, найденное колективным процессом квантовых параллельных вычислений, берущим свои истоки в суперпозиции, эквивалентно выполнению той же самой операции на классическом суперкомпьютере с ~10150 отдельных процессоров (что, конечно, невозможно)!! Первые исследователи в этой области были, конечно, вдохновлены такими гигантскими возможностями, и поэтому вскоре началась настоящая охота за подходящими задачами для такой вычислительной мощи. Питер Шор, исследователь и компьютерный ученый из компании AT&T's Bell Laboratories в Нью Джерси, предложил такую задачу, которую можно было бы решить именно на квантовом компьютере и при помощи квантового алгоритма. Алгоритм Шора использует мощь квантовой суперпозиции, чтобы раскладывать большие числа (порядка ~10200 двоичных разрядов и больше) на множители за несколько секунд. Эта задча имеет важное практическое применение для шифрования, где общепринятый (и лучший) алгоритм шифрования, известный как RSA, основан как раз на сложности разложения больших составных чисел на простые множители. Компьютер, который с легкостью решает такую задачу, конечно, представляет большой интерес для множества правительственных организаций, использующих RSA, который до сих пор считался "невзламываемым", и для любого кто заинтересован в безопсаности своих данных.

Шифрование, однако, только одно возможное применение квантового компьютера. Шор разработал целый набор математических операций, которые могут быть выполнены исключительно на квантовом компьютере. Некоторые из этих операций используются в его алгоритие факторизации. Далее, Фейнман утверждал, что квантовый компьютер может действовать как моделирующее устройство для квантовой физики, потенциально открывая двери ко многим открытиям в этой области. В настоящее время мощь и возможности квантового компьютера, в основном, предмет теоретических рассуждений; появление первого по-настоящему функционального квантового компьютера, несомненно, принесет много новых и волнующих практических применений.

Глава III. Алгоритм Гровера

Задача поиска состоит в следующем: имеется неупорядоченная база данных, состоящая из N-элементов, из которых лишь один удовлетворяет данным условиям — именно этот элемент нужно найти. Если элемент можно осмотреть, то определение того, удовлетворяет он требуемым условиям или нет, осуществляется за один шаг. Однако база данных такова, что в ней не существует какого-либо упорядочения, которое могло бы помочь выбору элемента. Наиболее эффективный классический алгоритм для этой задачи состоит в проверке элементов из базы данных одного за другим. Если элемент удовлетворяет требуемым условиям, поиск окончен, если нет, то данный элемент откладывается так, так чтобы он вновь не подвергался проверке. Очевидно, что в этом алгоритме требуется проверить в среднем

элементов прежде, чем будет найден нужный. [1]

Реализуя данный алгоритм, можно используя то же самое оборудование, как в классическом случае, но задавая вход и выход в виде суперпозиции состояний, можно найти объект за O(

) квантовомеханических шагов вместо О(N)) классических шагов. Каждый квантовомеханический шаг состоит из элементарной унитарной операции, которые рассмотрим далее.

Для осуществления данного алгоритма нам необходимы следующие три элементарные операции. Первая — это приготовление состояния, в котором система находится с равной вероятностью в любом из ее N базисных состояний; вторая — это преобразование Адамара и третья — выборочный поворот фаз состояний.

Как известно основной операцией для квантовых вычислений является операция М, действующая на один бит, которая представляется следующей матрицей:

т. е. бит в состоянии 0 превращается в суперпозицию двух состояний: (1/

, 1/
). Аналогично, бит в состоянии 1 трансформируется в (1/
,, —1/
,), т. е. величина амплитуды для каждого состояния равна 1/
,, но фаза в состоянии 1 перевернута. Фаза не имеет аналога в классических вероятностных алгоритмах. Она возникает в квантовой механике, где амплитуда вероятности комплексна. В системе, в которой состояние описывается п битами (т. е. имеется N = 2пвозможных состояний), мы можем осуществить преобразование М на каждом бите независимо, последовательно изменяя состояние системы. В случае, когда начальная конфигурация представляла собой конфигурацию с п битами в первом состоянии, полученная конфигурация будет иметь равные амплитуды
для каждого из
состояний. Это и есть способ создания суперпозиции с той же самой амплитудой для всех
состояний.

Третье преобразование, которое нам понадобится, — это выборочное вращение фазы амплитуды в определенных состояниях. Преобразование, представленное здесь для системы из двух состояний, имеет форму:

где j=

и
произвольные действительные числа. Заметим, что в отличие от преобразования Адамара и других матриц преобразования состояний, вероятность каждого состояния остается той же, т. к. квадрат абсолютной величины амплитуды в каждом состоянии остается прежним.

Рассмотрим задачу в абстрактной форме.

Пусть система имеет N = 2псостояний, которые обозначаются как

,...,
. Эти 2п состояния представляются как n-битные строки. Пусть существует единственное состояние, скажем
, которое довлетворяет условию C(
) = 1, тогда как для всех других состояний S, С(
,) = 0 (предполагается, что для любого состояния S условие
оценивается за единицу времени). Задача состоит в распознании состояния
,

Перейдем собственно к алгоритму

Шаги (1) и (2) являются последовательностью элементарных унитарных операций описаных ранее. Шаг (3) есть завершающее измерение, осуществляемое внешней системой.

(1) Приводим систему в состояние суперпозиции:

с одинаковыми амплитудами для каждого из N состояний. Эта суперпозиция может быть получена за

шагов.

(2) Повторим следующую унитарную операцию О(

) раз: