Смекни!
smekni.com

Микропроцессорный комплект серии К580 (стр. 1 из 4)

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Дальневосточный государственный технический университет

(ДВПИ им. В.В. Куйбышева)

Кафедра конструирования и производства радиоаппаратуры

Реферат

на тему:

«Микропроцессорный комплект серии К580»

2010

Содержание

1. Организация центрального процессора

2. Подключение памяти

3. Подключение интерфейсных программируемых БИС

4. Программная модель микропроцессорной системы

5. Методы адресации и примеры команд

6. Программирование на языке ассемблера

7. Программирование БИС параллельного интерфейса

8. Программирование таймера и контроллера прерываний

1. Организация центрального процессора

Микропроцессор серии К580 имеет 8-разрядную шину данных и 16-разрядную шину адреса. Шина адреса обеспечивает адресацию памяти объемом до 64 Кбайт и 256 портов ввода/вывода. Нагрузочная способность выходов МП невелика (один ТТЛ - вход), поэтому при построении системной магистрали их нужно буферировать. МП имеет средства обслуживания запросов прерывания, средства управления в режимах ожидания и прямого доступа к памяти (режим захвата).

Для построения центрального процессора на основе БИС К580ВМ80А (рисунок 1) дополнительно требуются микросхемы формирования сигналов синхронизации (тактовый генератор К580ГФ24) и сопряжения с системной магистралью (системный контроллер К580ВК28 и два шинных формирователя К580ВА86).

Тактовый генератор вырабатывает не перекрывающиеся положительные импульсы F1 и F2 амплитудой 12 В (для работы МП требуется три источника питания: +12 В, +5 В, -5 В). При частоте тактовых импульсов 2 МГц выбирается кварцевый резонатор на 18 МГц. Время, необходимое для извлечения одного байта из памяти или устройств ввода/вывода, или для выполнения простейших команд, называется машинным циклом. В общем случае время выполнения команды составляет 1-5 машинных циклов (М), каждый из которых включает 3-5 машинных тактов (Т). Во втором такте Т2 каждого машинного цикла на шину данных МП выдается байт состояния (см. рисунок 2), который по сигналу SYNC фиксируется в системном контроллере SC и используется для формирования сигналов обращения к памяти (MEMR, MEMW) и устройствам ввода/вывода (IOR, IOW). Системный контроллер выполняет также роль буфера шины данных и формирует сигнал подтверждения прерываний INTA.


Машинный цикл 1 Машинный цикл 2
Такт 1 Tакт 2 Tакт 3 Tакт 4 Tакт 1 Tакт 2 Tакт 3
F1
F2
SYNC

Рисунок 2 – Диаграммы синхронизации процессора на базе К580ВМ80А.

Буфер шины адреса реализован с помощью 8-разрядных шинных формирователей К580ВА86. При логической единице на входе ОЕ (режим захвата системной магистрали контроллером ПДП) шина адреса МП переходит в состояние разомкнутого выхода.

Работа по программе является основным режимом работы МП. После системного сброса (при включении источника питания он происходит автоматически за счет RC-цепи, подключенной к входу RESIN тактового генератора) в программном счетчике устанавливается адрес нулевой ячейки памяти. Процессор считывает байт информации из этой ячейки и расшифровывает его как код операции первой команды. Если команда двух- или трехбайтовая, то в последующих циклах выбираются недостающие один или два байта из следующих ячеек памяти. Процессор выполняет первую команду, а программный счетчик формирует адрес следующей команды, увеличивая свое содержимое после каждого чтения из памяти. Команды, расположенные в последовательных ячейках памяти, выполняются до тех пор, пока не встретится команда перехода, скачком изменяющая содержимое программного счетчика.

В процессе выполнения программы МП может перейти в режим ожидания (WAIT=1), если нет сигнала готовности внешних устройств RDIN. При появлении этого сигнала работа возобновляется

Если разрешены прерывания, то по сигналу запроса INT от внешнего источника работа по программе прерывается для выполнения специальной подпрограммы обслуживания прерывания. Последней командой этой подпрограммы обычно предписывается возврат к выполнению основной программы.

По сигналу HLD (запрос ПДП) центральный процессор отключается от шин адреса и данных: буфера этих шин переходят в высокоимпедансное состояние.

2. Подключение памяти

Рассмотрим вариант подключения к системной магистрали устройств памяти с использованием микросхем перепрограммируемых ПЗУ с ультрафиолетовым стиранием типа К573РФ5 и ОЗУ статического типа К537РУ9 (рис.3). Каждая из микросхем образует страницу памяти объемом 2 Кбайта, выбор нужного слова из которой производится с помощью адресных сигналов А0-А10. Выбор нужной страницы осуществляет дешифратор К555ИД7 по состоянию старших разрядов адресной шины A11-A15. В данном примере ячейки ПЗУ и ОЗУ занимают в адресном пространстве МП соответственно области 0000H-07FFH и 0800H-0FFFH.

Подключение выходов микросхем памяти к шине данных производится при подаче логического нуля на входы разрешения выхода ОЕ (сигнал MEMR). Направление передачи информации в ОЗУ изменяется в зависимости от сигнала на линии MEMW шины управления. При необходимости можно включить еще шесть страниц ОЗУ или ПЗУ. Для этого потребуется еще шесть микросхем выбранного типа.

3. Подключение интерфейсных программируемых БИС

Рассмотрим подключение к системной магистрали БИС параллельного интерфейса K580BB55, программируемого таймера К580ВИ53 и контроллера прерываний К580ВН59 (рис.4).

Параллельный интерфейс (PPI) позволяет переключать шину данных МП на работу с одним их трех портов ввода/вывода: PA, PB, PC. После системного сброса все три порта настроены на режим ввода информации. При необходимости можно изменить режим работы каждого из портов. Для этого через шину данных МП в регистр управляющего слова PPI (РУС1) программно заносится управляющая информация. Адресация к конкретному порту производится с помощью адресных сигналов АО и А1. При этом сочетаниям A1, А0 вида 00,01,10, 11 соответствуют порты РА, РВ, PC и РУС1. Дешифрация старших разрядов адреса портов ввода/вывода осуществляется дешифратором К555ИД7. Нетрудно установить (см. рис.4), что портам параллельного интерфейса присвоены адреса 80Н, 81Н, 82Н и 83Н. В рассматриваемом примере порт РА используется для ввода информации в МП с восьми датчиков (имитируются линейкой тумблеров S0-S7), порт РВ - для вывода информации на линейку светодиодов HL0-HL7.

Программируемый таймер (РТ) содержит три 16-разрядных счетчика, работающих па вычитание. Счетчики могут быть запрограммированы для работы в одном из шести режимов при двоичном либо двоично-десятичном счете. Каждый из счетчиков имеет тактовый вход CLK, вход разрешения счета GATE и выход OUT (на рисунке выходы счетчиков не показаны). Командами ввода и вывода можно осуществить начальную загрузку счетчиков и считывание их состояний в МП.

Адресация трех счетчиков и управляющего регистра таймера производится с помощью двух адресных входов АО и А1 и входа CS. Можно установить (см. рис.4), что портам таймера соответствуют адреса 84Н (СТ0), 85Н (СТ1), 86Н (СТ2) и 87Н (РУС2).

Контроллер прерываний (PCI) реализует до восьми уровней запросов на прерывание (векторная система) с возможностью программного маскирования и изменения приоритета. Принимая запросы на прерывания от внешних устройств IR0-IR7 (это могут быть, в частности, сигналы, формируемые таймером или параллельным интерфейсом), контроллер формирует сигнал INT для микропроцессора от того канала, который в данный момент имеет наивысший приоритет. От МП контроллер получает сигнал подтверждения прерывания INTA. Управляющие регистры контроллера прерываний имеют адреса 88Н и 89H.

При обращении к портам ввода/вывода, для адресации которых достаточно одного байта адресного кода, процессор дублирует в старшем байте шины адреса содержимое младшего байта.

4. Программная модель микропроцессорной системы

С точки зрения программиста микропроцессор К580ВМ80А имеет следующие доступные ресурсы (рис.5):

1) 8-битовый аккумулятор А и шесть 8-разрядных регистров общего назначения (РОН) В, С, D, E, H, L;

2) 8-битовый регистр признаков F, в котором сохраняются пять признаков результата выполнения арифметических и логических операций в МП (бит знака S, бит нуля Z, бит четности Р, бит переноса С. бит дополнительного переноса АС);