Смекни!
smekni.com

Перспективные технологии памяти (стр. 1 из 3)

Министерство образования и науки Российской Федерации

Факультет «»

Кафедра «»

Перспективные технологии памяти

РЕФЕРАТ

по дисциплине «»

Проверил

______________________2010 г.

Автор работы (проекта)

____________________2010 г.

Реферат защищен

с оценкой

___________________________

_____________________2010 г.

Златоуст 2010


СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 4

1. ИСТОРИЯ РАЗВИТИЯ ПЕРСПЕКТИВНЫХ ТЕХНОЛОГИЙ.. 4

2. КЛАССИЧЕСКИЕ РЕШЕНИЯ.. 4

3. ТИПЫ ПАМЯТИ.. 4

3.1.ПОЛИМЕРНАЯ ПАМЯТЬ (PFRAM)4

3.2. PRAM.. 4

3.3. MRAM.. 4

3.4. FERAM.. 4

ЗАКЛЮЧЕНИЕ. 4

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 4

ВВЕДЕНИЕ

Создание новых технологий, их развитие и воплощение в коммерческих продуктах – процесс непрерывный и закономерный. Без появления новых технологий остановился бы технический прогресс, а рыночную экономику ждал бы неминуемый коллапс. Однако каждая из новых разработок имеет свои особенности и определенный потенциал. Если одни могут лишь незначительно улучшить существующие решения, то другие способны совершить настоящий переворот в той или иной отрасли ИT-индустрии.

В современной электронике применяется несколько видов полупроводниковой памяти, различающихся по емкости (объему), рассеиваемой мощности, уровню питания, внутренней организации, типу интерфейса, быстродействию, габаритам и другим характеристикам. Производится тысячи разновидностей этих микросхем с различными параметрами, но, пожалуй, одним из главных отличий является отношение памяти к наличию питания. Одни типы (FLASH, EEPROM, OTP EPROM) способны сохранять записанные данные при выключенном питании, другие – нет. Есть и еще одно важное различие: одни виды допускают обращение по любому адресу, то есть к произвольной ячейке, а другие, в силу технологических или иных особенностей, имеют ограничения по адресации данных. Пока нет универсального варианта, разработчику, к сожалению, приходится ставить на одну плату два, три, а то и больше разных видов памяти. И каждый из них требует формирования своих, особенных диаграмм записи и чтения.

Попытки создать универсальную память, обладающую достоинствами всех видов – энергонезависимостью, малым временем доступа и произвольной адресацией, велись непрерывно. Испытывались различные физические принципы, опробовались новые материалы, разрабатывались и менялись технологии. Появились новые микросхемы памяти, причем некоторые из них стали серийным продуктом, изменились структуры ячеек памяти, яснее обозначились возможности, достоинства и недостатки различных технологий. Наконец, появились совершенно новые технические решения.

1. ИСТОРИЯ РАЗВИТИЯ ПЕРСПЕКТИВНЫХ ТЕХНОЛОГИЙ

Кремниевые полупроводниковые технологии почти исчерпали свои ресурсы, и поэтому неотвратимо приближается эра новых технических решений. В декабре 2005 года было опубликовано официальное сообщение International Technology Roadmap for Semiconductors от имени Международного комитета производителей. В сообщении говорится о начале перехода к посткремниевой эре в схемотехнике. Производители из Японии, Европы, Кореи, США и Тайваня планируют в ближайшее время представить объединенный план перехода на новую технологию. Вероятно, универсальная память, как важнейший компонент электронных устройств, если когда-нибудь и появится, то будет продуктом именно новых, а не традиционных кремниевых технологий. [4]

Основным отличием современных подходов к разработке энергонезависимой памяти является применение совершенно новых физических принципов и механизмов хранения информации:

-перемещение заряда в кристалле или молекуле вещества (сегнетоэлектрическая память FRAM);

-изменение электрического сопротивления ячейки в зависимости от изменения магнитного поля (магнито-резистивная память MRAM);

-изменение фазового состояния вещества и связанного с ним изменения электрических свойств (CRAM или PC Memory);

-использование наномеханических переключателей, имеющих два стабильных положения (NRAM).

Приблизительно с 2000 года ведутся настойчивые попытки разработать технологию серийного производства памяти на веществах с изменяемым фазовым состоянием. На так называемых халькогенидах на основе селена, серы или теллура. Эти вещества (халькогениды) меняют свое строение при нагревании, переходя из кристаллической фазы в аморфное состояние. В этом состоянии вещество остается после остывания. Но если его вновь нагреть и выдержать в расплавленном состоянии короткое время (около 50 нс), то оно вновь вернется к исходному, кристаллическому виду. Широко известны оптические запоминающие устройства (CD ROM), которые реализуются именно на таких материалах.

Как оказалось, при смене фазового состояния меняются не только оптические, но и электрические характеристики вещества. Проводимость кристаллического перехода отличается от проводимости аморфного в десятки и даже сотни раз. Эту особенность и используют в новых ИС запоминающих устройств. Кроме энергонезависимости привлекательными качествами ЗУ на халькогенидах являются также исключительно высокая радиационная стойкость, нечувствительность к электрическим и магнитным полям, что крайне важно при создании аэрокосмических аппаратов и военной техники. По этой причине повышенный интерес к исследованиям в данной области проявляют структуры, связанные с космосом и обороной.

Первыми занялись разработками технологии специалисты фирмы Ovonyx. Компании удалось добиться успеха в своих исследованиях и определить основные принципы технологии производства памяти в интегральном исполнении. Патенты на нее быстро разошлись по свету. Попытки усовершенствовать процессы и получить промышленные образцы таких ЗУ велись в ряде крупнейших фирм (STMicroelectronics, BAE Systems). Конечно же, такой гигант, как Intel, тоже не обошел вниманием указанную проблему, но он, впрочем, принимает участие в разработках вообще всех перспективных технологий. Однако удача сопутствовала не всем. Прошли годы, но лишь одна BAE Systems (компания — один из крупных поставщиков электронных систем для вооруженных сил США и NASA), сообщила о начале серийного производства C-RAM (Chalcogenide Random Access Memory). В других компаниях такие ЗУ называют PCM (Phase Change Memory), или OUM (Ovonyx Unified Memory). [1]

Другая технология, в которой использованы самые современные достижения, память на нанопереключателях, реализуется на углеродных нанотрубках. (Приставка «нано» означает применение прецизионных технологий, в которых размеры основных элементов структуры меньше 100 нм (< 0,1 микрона), а также продукты, в принципах, работы которых проявляются законы квантовой физики.) Здесь использованы новые, ранее неизвестные материалы и недоступные решения.

Всем со школьных времен хорошо известны такие структурные формы существования углерода, как графит и алмаз. Углеродная нанотрубка – это новая форма углерода, представляющая собой свернутые в пустотелую трубочку с диаметром в несколько нанометров и длиной в десятки микрон «сеточки», состоящие из атомов углерода. Сеточки образуются структурами, напоминающими пластинчатые молекулы графита. Впервые они были обнаружены японской компанией NEC в 1991 году, в процессе производства фуллеренов. Эти структуры, представляющие собой порошок черного цвета, очень похожий на сажу, интересны не своими размерами и необычной формой, а, прежде всего, особенными качествами. Оказывается, строение нанотрубки определяет ее электронные свойства: они могут быть металлами, полуметаллами или полупроводниками. Так, многослойные трубки имеют свойства, присущие полупроводникам.

Первая ячейка памяти на нанотрубках, разработанная в компании NEC, представляла собой сеть скрещивающихся в пространстве углеродных трубок, часть из них могла приходить в соприкосновение друг с другом, меняя сопротивление цепи. Программирование состояния, то есть запись данных, производилось путем подачи электрического тока к нужному участку, считывание – измерением сопротивления цепи, Точнее, сравнением его с некоторым пороговым уровнем. Этот тип памяти обещал прекрасные перспективы в будущем, так как ячейки получались малопотребляющими при записи и энергонезависимыми при хранении данных. Однако, кроме высокой стоимости производства, дело осложнялось техническими проблемами. Технология требовала идентичности свойств нанотрубок и строгого контроля за их пространственной ориентацией. Достичь этого удавалось с большим трудом.

Несколько лет назад о своих первых успехах в данном направлении объявила новая американская компания Nantero (www.nantero.com), которая ведет исследования в партнерстве с ON Semicoductors, LSI Logic и уже знакомой нам BAE Systems. Nantero удалось найти оригинальное решение проблемы: в новой структуре вся поверхность предварительно обработанной должным образом кремниевой пластины покрывалась углеродными нанотрубками, а затем часть из них удалялась методом обычной литографии.

В исходном состоянии нанотрубки натянуты и не касаются поверхности расположенных ниже электродов. Расстояние между плоскостью размещения углеродных трубок и поверхностью электродов равно всего 13 нм. При записи информации напряжение прикладывается к электродам и элементам межсоединений. Находящиеся над местом пересечения эластичные трубки прогибаются вниз под действием электрического поля и касаются поверхности электродов, меняя сопротивление цепи. Трубки удерживаются в таком положении под действием сил Ван Дер Ваальса после снятия напряжения(некоторая избыточность трубок лишь повышает надежность системы). Подача обратного напряжения позволяет им вновь распрямиться и разорвать контакт между элементом межсоединения и электродом. Таким образом можно записывать и стирать информацию. Пространственная ориентация трубок и интервал между ними при данной технологии не играют особой роли. Упрощения сказываются на стоимости конечного продукта, снижая ее до разумных пределов.