Смекни!
smekni.com

Модели аналоговых пассивных компонентов программного пакета MicroCAP-7 (стр. 3 из 3)


Рис. 5. Схема замещения линии передачи

Таблица 5. Параметры модели линии передачи

Обозначение Параметр Размерность Значение по умолчанию
Идеальная линия без потерь
Z0 Волновое сопротивление Ом
TD Время задержки сигнала с
F Частота для расчета NL Гц
NL Электрическая длина на частоте F (относительно длины волны) 0,25
Линия с потерями
R Погонное сопротивление Ом/м
L Погонная индуктивность Гн/м
G Погонная проводимость См/м
С Погонная емкость Ф/м
LEN Длина линии м

Рис. 6. Окно задания параметров линии передачи


7. Диод (Diode) и стабилитрон (Zener)

Формат схем МС:

Атрибут PART: <имя>

Атрибут VALUE: [Area] [OFF] [IC=<Vd>]

Атрибут MODEL: [имя модели]

Параметр Area задает коэффициент кратности для учета подключения нескольких параллельных диодов (параметры модели диода умножаются или делятся на эту величину). Параметр IC задает начальное напряжение на диоде Vd при расчете переходных процессов, если на панели Transient Analysis Limits выключена опция Operating Point. Включение ключевого слова OFF исключает диод из схемы при проведении первой итерации расчета режима по постоянному току.

Модель диода задается директивой

.MODEL <имя модели> 0[(параметры модели)]

Приведем пример модели диода Д104А:

.model D104A D (IS=5.81Е-12 RS=8.1 N=1.15 TT=8.28NS CJO=41.2PF VJ=0.71 M=0.33 FC=0.5 EG=1.11 XTI=3)

Математическая модель диода задается параметрами, перечисленными в табл. 6.

Таблица 6. Параметры модели диода

Обозначение Параметр Значение по умолчанию Единица измерения
Level Тип модели: 1 — SPICE2G, 2 — PSpice 1
IS Ток насыщения при температуре 27°С 10–14 А
RS Объемное сопротивление 0 Ом
N Коэффициент эмиссии (неидеальности) 1
ISR Параметр тока рекомбинации 0 А
NR Коэффициент эмиссии (неидеальности)для тока ISR 2
IKF Предельный ток при высоком уровне инжекции ¥ А
TT Время переноса заряда 0 с
CJO Барьерная емкость при нулевом смещении 0 Ф
VJ Контактная разность потенциалов 1 В
M Коэффициент плавности p-n перехода (1/2 —для резкого, 1/3 — плавного) 0,5
EG Ширина запрещенной зоны 1,11 эВ
FC Коэффициент нелинейности барьерной емкости прямосмещенного перехода 0,5
BV Обратное напряжение пробоя (положительная величина) ¥ В
IBV Начальный ток пробоя, соответствующий напряжению BV (положительная величина) 10-10 А
NBV Коэффициент неидеальности на участке пробоя 1
IBVL Начальный ток пробоя низкого уровня 0 А
NBVL Коэффициент неидеальности на участке пробоя низкого уровня 1

Таблица 6. Параметры модели диода (окончание)

XTI Температурный коэффициент тока насыщения IS 3
TIKF Линейный температурный коэффициент IKF 0 °C-1
TBV1 Линейный температурный коэффициент BV 0 °C-1
TBV2 Квадратичный температурный коэффициент BV 0 °C-1
TRS1 Линейный температурный коэффициент RS 0 °C-1
TRS2 Квадратичный температурный коэффициент RS 0 °C-2
KF Коэффициент фликкер-шума 0
AF Показатель степени в формуле фликкер-шума 1
RL Сопротивление утечки перехода ¥ Ом
T_MEASURED Температура измерений °C
T_ABS Абсолютная температура °C
T_REL_GLOBAL Относительная температура °C
T_REL_LOCL Разность между температурой диода и модели-прототипа °C

С уравнениями, по которым производится расчет при моделировании диодов и прочих полупроводниковых приборов при необходимости можно ознакомиться в [4, 6].

Рис. 7. Окно задания параметров диода Рис. 8. Модель диода

Стабилитроны имеют ту же модель, что и диоды. При выборе стабилитрона необходимо обращать внимание на параметр модели BV — напряжение обратного пробоя, фактически оно же и является напряжением стабилизации при обратном включении диода. См. примеры моделирования схемные файлы DIODE & ZENER из каталога COMPONENTS&bsol;PASSIVECOMP.

Диоды выбираются с помощью следующих путей в меню COMPONENTS/Analog Primitives/Passive Components/Diode, COMPONENTS/Analog Library/DIODE (далеевподменюнужныйтипдиода). Стабилитроны — COMPONENTS/Analog Primitives/Passive Components/ZENER, COMPONENTS/Analog Library/Diode/ZENER.


Заключение

MicroCAP-7 — это универсальный пакет программ схемотехнического анализа, предназначенный для решения широкого круга задач. Характерной особенностью этого пакета, впрочем, как и всех программ семейства MicroCAP (MicroCAP-3… MicroCAP-8) [1, 2], является наличие удобного и дружественного графического интерфейса, что делает его особенно привлекательным для непрофессиональной студенческой аудитории. Несмотря на достаточно скромные требования к программно-аппаратным средствам ПК (процессор не ниже PentiumII, ОС Windows 95/98/ME или WindowsNT 4/2000/XP, память не менее 64 Мб, монитор не хуже SVGA), его возможности достаточно велики. С его помощью можно анализировать не только аналоговые, но и цифровые устройства. Возможно также и смешанное моделирования аналого-цифровых электронных устройств, реализуемое в полной мере опытным пользователем пакета, способным в нестандартной ситуации создавать собственные макромодели, облегчающие имитационное моделирование без потери существенной информации о поведении системы.

Перечисленные достоинства делают пакет программ MicroCAP-7 весьма привлекательным для моделирования электронных устройств средней степени сложности. Удобство в работе, нетребовательность к ресурсам компьютера и способность анализировать электронные устройства с достаточно большим количеством компонентов позволяют успешно использовать этот пакет в учебном процессе. Настоящее пособие не претендует на полное руководство по работе с MicroCAP-7.


Список литературы

1. Разевиг В.Д. Система схемотехнического моделирования Micro-Cap V. – Москва, «Солон», 1997. – 273 с. 621.3 Р17 /1997 – 1 аб, 3 чз

2. Разевиг В.Д. Система сквозного проектирования электронных устройств Design Lab 8.0. – Москва, «Солон», 1999. 004 Р-17 /2003 – 1 аб/ 2000 – 11 аб, 5 чз

3. Карлащук В.И. Электронная лаборатория на IBM PC. Программа Electronics Workbench и ее применение.— Москва: Солон-Р, 2001. – 726 с. 004 K23/ 10 аб, 5 чз.

4. Micro-Cap 7.0 Electronic Circuit Analysis Program Reference Manual Copyright 1982-2001 by Spectrum Software 1021 South Wolfe Road Sunnyvale, CA 94086