Смекни!
smekni.com

Локальные сети 2 3 (стр. 17 из 21)

- IEEE 802.16.3, определяющий радиоинтерфейс для систем, работающих в лицензируемых диапазонах от 2 до 11 ГГц.

Специальные требования к широкополосным услугам сформулированы в спецификациях 802.16.1. Здесь предусмотрено три типа услуг: основанные на коммутации каналов, на пакетах переменной длины и на пакетах/ячейках фиксированной длины. Специфика услуг первого типа очевидна из самого названия. Услуги с пакетами переменной длины ориентированы на работу с трафиком IP, frame relay и MPEG-4. Третий тип услуг предусмотрен для совместимости с сетями ATM. При описании широкополосных услуг ключевыми параметрами являются поддерживаемая скорость передачи данных, частота ошибок передачи и максимальная задержка однонаправленной передачи.

Так может выглядеть сеть на основе WiMAX. WiMax (Worldwide Interoperability for

Microwave Access) – это коммерческое «имя» стандарта беспроводной связи 802.16, принятого в январе 2003 года и поддержанного промышленной группой, в состав которой входят не один десяток известных компаний. Целью этой организации является содействие разработке беспроводного оборудования для доступа к широкополосным сетям, скорейшее развертывание сетей во всём мире и сертификация оборудования 802.16.

Сети WWAN на основе протокола 802.16, а позднее и 802.20 покроют целые города и страны. В спецификациях, разработанных IEEE (Институт инженеров по электротехнике и электронике) указано, что радиус действия точек этого стандарта достигает 50 км, что позволит устанавливать их так же, как и соты для мобильной связи.

Протокол 802.16 разработан для организации беспроводного доступа на уровне мегаполисов, и призван решить провайдерскую проблему «последней мили», а также сократить финансовые расходы и временные затраты на разворачивание новых подключений, благодаря унификации решения. Если сегодня на подключение одного предприятия к сети может уходить несколько месяцев, то в будущем это будет возможно сделать за несколько часов или дней.

Точки доступа 802.16 будут устанавливаться на высотных зданиях и мачтах сетей сотовой связи. Работая в частотном диапазоне от 2 до 11 ГГц, они позволят развернуть беспроводной доступ с шириной канала до 70 Мбит в секунду на сектор одной базовой станции (до 6 секторов на одну точку доступа) и обеспечить передачу данных вне зоны прямой видимости. Полоса пропускания, выделяемая клиентам, может контролироваться на стороне провайдера, что позволит, к примеру, обеспечить физическим лицам канал на уровне DSL, а организациям до уровня T1.

Также стоит отметить, что протокол 802.16 предусматривает не только передачу данных, но и голоса, а также видео (в виде тех же данных), что позволит организовать на основе этого протокола сотовые сети с возможностью видеофонии (параллельный обмен голосовыми данными и видео), а также доступ к Интернету и Интранету.

Широкополосная беспроводная связь уже давно рассматривается в качестве реальной альтернативы традиционным способам высокоскоростного абонентского доступа, в том числе и новым «проводным» технологиям, таким как DSL и кабельные модемы. Местные и многоканальные многоточечные

распределительные системы LMDS и MMDS (которые называют также «сотовым телевидением» и «беспроводным КТВ»), первоначально предназначавшиеся для трансляции телепрограмм в районах, не имеющих кабельной инфраструктуры, в последнее время все чаще используются для организации широкополосной беспроводной передачи данных на «последней миле». Радиус действия передатчиков MMDS, работающих в диапазоне 2,1 – 2,7 ГГц, может достигать 40 – 50 км, в то время как максимальная дальность передачи сигнала в системах LMDS, использующих значительно более высокие частоты в области 27 – 31 ГГц, составляет 2,5 – 3 км.

Массовому распространению этих систем до сих пор мешает отсутствие индустриальных стандартов и, как следствие, несовместимость продуктов разных производителей. Стандарт IEEE 802.16a

В начале 2003 года принят стандарт беспроводных городских сетей (WirelessMAN). В дополнение к спецификациям стандарта IEEE 802.16, утвержденному в апреле 2002 года, был введен стандарт IEEE 802.16a. Первый стандарт описывал спецификацию интерфейса модуляции с одной несущей (SC – Single Carrier), работающего на частотах от 10 до 66 ГГц. Cтандарт открывает возможности создания систем стационарного беспроводного широкополосного доступа, которые станут недорогой заменой оптоволоконным кабелям при создании городских сетей. По стандарту 802.16, операторы могут устанавливать базовые станции, подключенные к общей сети. Каждая из станций может поддерживать сотни абонентских станций.

802.16a учитывает тонкости распределения спектра в диапазоне 10 – 66 ГГц. Он определяет три режима «физического уровня» соединений. Предусмотрен режим с одной несущей для специальных нужд, но при этом добавлено OFDM – мультиплексирование с ортогональным разделением частоты на 256 каналов, которое разбивает радиоканал на множество каналов, что позволяет увеличить скорость обмена, за счет параллельной передачи данных. Дополнительно появляется возможность отстроиться от помех, возникающих в результате многолучевого распространения сигнала. Ортогональное размещение поднесущих обеспечивает передачу результирующего сигнала в более узком спектре по сравнению с другими методами мультиплексирования. Еще одно дополнение – мультиплексирование OFDMA на 2048 каналов, предоставляющее возможности улучшенного мультиплексирования в сетях с несколькими уровнями. 802.16 отнюдь не является конкурирующим стандарту 802.11, он предназначен для производительных беспроводных сетей, таких, как WMAN (Wireless Metropolitan Network).

В то время как устройства 802.11, по спецификации, действуют максимум на 300м, стандарт 802.16 позволит соединять компьютеры на расстоянии до 50 км. При этом используются частоты, не требующие лицензирования в США – 2 – 11ГГц, скорость передачи данных в такой сети – 70 Мбит/с.

В первой версии стандарта рассматривается диапазон частот 10 – 66 ГГц

(включающий лицензируемые диапазоны 10.5, 25, 26, 31, 38 и 39 ГГц) для которого предусмотрено использование указанных выше видов модуляции в одночастотном (single-carrier – SC) режиме. Особенности распространения радиоволн этого диапазона ограничивают возможности работы условиями прямой видимости. В типичных городских условиях это позволяет подключить около 50% абонентов, находящихся в пределах рабочей дальности от базовой станции. До остальных 50% прямой видимости, как правило, нет. Поэтому было разработано дополнение к стандарту 802.16a для диапазонов 2 – 11 ГГц, предусматривающее, помимо одночастотной передачи SC, еще и режимы ортогонального частотного мультиплексирования (Orthogonal Frequency Division Multiplexing – OFDM) и множественного доступа на основе ортогонального частотного

мультиплексирования (Orthogonal Frequency Division Multiply Access – OFDMA). В режиме OFDM предусмотрена одновременная передача на 256 поднесущих, что позволяет, за счет увеличения примерно в такое же число раз длительности элементарного символа, одновременно принимать прямой и отраженные от препятствий сигналы или вообще работать только по отраженным сигналам вне пределов прямой видимости. Режим OFDMA предусматривает работу на 2048 поднесущих сразу с несколькими абонентами в режиме OFDM. При стандартном количестве поднесущих – 256, обеспечивается одновременная работа с 8 абонентами.

В стандарте также описаны модели сред распространения радиоволн и на этой основе сформулированы требования к параметрам радиооборудования. Предусмотрены возможности автоматической регулировки усиления, динамического выбора частоты в нелицензируемых диапазонах. Помимо топологии точка-многоточка стандартом опционально предусмотрена полносвязная топология – Mesh Mode, позволяющая обеспечить прямую связь между пользователями, преодолеть помехи, характерные для безлицензионных диапазонов, за счет выбора направления приема, свободного от них, создавать хорошо масштабируемые сети и работать вне прямой видимости даже в одночастотном режиме SC, за счет ретрансляции сигналов абонентскими станциями.

Развитие технологии Ethernet

Технология Ethernet продолжила своё развитие по двум направлениям:


1. Fast Ethernet – Gigabit Ethernet, 2. 100VG-AnyLAN – Gigabit VG.

Технология 100VG-AnyLAN. Разработчики: Hewlett-Packard, AT&T, IBM.

Ethernet

1. CSMA/CD

2. 10 Мбит/с

3. Витая пара, оптоволокно, коаксиал

4. Звезда, шина

Fast Ethernet 100VG-AnyLAN

1. CSMA/CD 1. Demand Priority

2. 100 Мбит/с 2. 100 Мбит/с

3.

Витая пара, оптоволокно 3. Витая пара (неэкр.)

4. Звезда 4. Звезда

Gigabit Ethernet Gigabit VG

1. CSMA/CD 1. Demand Priority

2. 1000 Мбит/с 2. 1000 Мбит/с

3. Витая пара, оптоволокно 3. Витая пара (неэкр.)

4. Звезда 4. Звезда

Основные характеристики технологии:

Radio Ethernet

1. CSMA/CА

2. 1; 2; 11; 54 Мбит/с

3. Радиоволны

4. Полносвязная, звезда


1. Используется другой метод доступа – приоритетный доступ по требованию (Demand Priority), который обеспечивает более справедливое распределение пропускной способности сети по сравнению с методом CSMA/CD (Ethernet’а). Кроме того, этот метод поддерживает приоритетный доступ для синхронных приложений.

2. Кадры информации передаются не всем станциям сети (как в классическом Ethernet), а только станции назначения.

3. Поддерживает кадры двух технологий – Ethernet и Token Ring.

4. Данные передаются одновременно по четырём неэкранированным парам UTP категории 3. По каждой паре данные передаются со скоростью 25Мбит/с, что в сумме даёт 100 Мбит/с.

5. В сетях 100VG-AnyLAN нет коллизий.

Метод доступа Demand Priority основан на передаче концентратору функций арбитра, решающего кому предоставить доступ к разделяемой среде передачи данных (к каналу).

Сеть 100VG-AnyLAN состоит из концентратора и соединённых с ним конечных узлов (РС) и других концентраторов по топологии “звезда”. Концентратор циклически выполняет опрос своих портов. Станция желающая передать свой кадр данных, посылает специальный сигнал низкой частоты концентратору, запрашивая разрешение на передачу и указывая её приоритет.