Метод расчета скейлинговых констант Фейгенбаума для одномерных дискретных отображений по точкам сверхустойчивых циклов

СОДЕРЖАНИЕ: Некоторые факты из теории универсальности Митчелла Фейгенбаума. Будем называть непрерывное отображение отрезка в себя унимодальным, если внутри отрезка имеется точка экстремума и по обе стороны от неё отображение является строго монотонным

Антон Никифоров

Напомню для начала некоторые факты из теории универсальности Митчелла Фейгенбаума. Будем называть непрерывное отображение отрезка в себя унимодальным, если внутри отрезка имеется точка экстремума

и по обе стороны от неё отображение является строго монотонным (с одной из сторон возрастающим, с другой убывающим). Условимся далее рассматривать только унимодальные отображения вида

(1)

Если последовательность {

} при данном r состоит из n точек, такую последовательность будем называть n-циклом, что
=f(
),
=f(
), …,
=f(
) или
. Заметим, что производная порядка n функции
(n раз вычисленной функции f(x)) в точке x по правилу дифференцирования сложной функции равна
.

Точки цикла, удовлетворяющие соотношению

(2)

называются неподвижными.

Величина

(так называемый мультипликатор) определяет устойчивость n-цикла и её принято называть устойчивостью (stability, [2], p.121). n-цикл называется устойчивым, если
<1.

n-цикл, содержащий

в качестве одной из своих точек, называются сверхустойчивым. Для такого цикла
=0.

Как было продемонстрировано в 1978 году М.Фейгенбаумом [4], значения параметра

, при которых число устойчивых периодических точек удваивается и становится равным
, удовлетворяют масштабному соотношению, или как говорят имеют скейлинг:

(3)

Данное соотношение встречается также и в следующей записи:

,n>>1 ([1], стр. 49),
(3.1)

Рис.1

Или в таком виде:

,(см. [2], p.3),

Расстояния

от точки
, где
- точка экстремума рассматриваемого отображения (на рис 1. x=1/2), до ближайшей к ней точки на - цикле подчиняются следующему соотношению:

, n>>1
(4)

Константы Фейгенбаума имеют значения

,
и являются ни много ни мало мировыми транцедентными числами, такими как
или e.

Сказку о том, как Фейгенбаум сидел в тени деревьев и вычислял их на своём калькуляторе HP-65 с золотистыми кнопочками вы, наверное, слышали. Это был первый программируемый калькулятор и стоил ни много ни мало аж 400 (четыреста!) долларов. Наивно полагать, что своё удивительное открытие Фейгенбаум сделал, пользуясь исключительно калькулятором: все-таки в то время он работал в Лос-Аламосе, а у военных всегда были и будут самые мощные компьютеры в мире, однако открытие действительно было чудесным - какие бы унимодальные отображения мы не рассматривали, скейлинг для них (т.е. "волшебные" числа

и
) будет тем же самым.

Алгоритм

Интересно, что точки

также можно использовать для расчета
, этим факт мы и будем использовать в дальнейшем. Обратим внимание, что в точках
мультипликатор
всегда равен нулю, что автоматически означает устойчивость этих циклов:

(a) Например, для цикла периода два:
, где
, таким образом
(5.1)
(б) Цикл периода четыре:
, где
, таким образом
(5.2)

Для произвольных же

-циклов справедливо выражение:

(6)

Уравнение (5.3) легко решается относительно параметра

, например, с помощью метода последовательных итераций Ньютона:

(6.1)

Здесь i - номер итерации. Таким образом, весь процесс вычисления, скажем, константы

сводится к нахождению таких значений параметра R, при которых бифуркационная диаграмма пересекает линию
. Для этого необходимо решить уравнение (6), проитерировав его
раз.

НА ВХОД ПОДАЕМ:

Начинаем итерировать функцию f cо следующего значения:

Итерируем производную функции начиная с

Начальные приближения двух значений параметра R:

,

Разумное начальное приближение для постоянной :

НА ВЫХОДЕ ПОЛУЧАЕМ:

А весь процесс может быть описан следующими выражениями:

, n=2,3,4,…

, i=0,1,2,…

Рассмотрим на примерах как выглядят непосредственные вычислительные формулы.

ПРИМЕР 1:

При данном значении функция f будет зависеть только от константы r, обозначим эту функцию как

. Тогда предыдущее уравнение можно будет переписать:

ПРИМЕР 2:

ПРИМЕР 3:

Программу расчета константы

вы можете найти здесь. Её легко модицифировать для расчета постоянной
, что предоставляется проделать читателю. Результат расчета
в зависимости от шага i приводится ниже.

i
1 6.9032539091...
2 4.7443094689...
3 4.6744478277...
4 4.6707911502...
5 4.6694616483...
6 4.6692658098...
... ...
11 4.66920173800930...

Список литературы

[1] Г.Шустер, "Детерминированный хаос. Введение", М:Мир, 1988

[2] K.Briggs "Feigenbaum Scaling in Discrete Dynamical Systems", PhD thesis, 1997

[3] Е.Б.Вул, Я.Г.Синай, К.М.Ханин, "Универсальность Фейгенбаума и термодинамический формализм", УМН, т.39, вып.3(237), 1984

[4] М.Фейгенбаум, "Универсальность в поведении нелинейных систем", УФН, т.141, вып.2, октябрь 1983

[5] Н.Н.Калиткин, "Численные методы", М:Наука, 1978

[6] Метод Ньютона

СКАЧАТЬ ДОКУМЕНТ

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта - спам опубликован не будет

Ваше имя:

Комментарий

Copyright © MirZnanii.com 2015-2017. All rigths reserved.