Смекни!
smekni.com

Билеты по астрономии, 11 класс (стр. 9 из 10)

Открытые скопления содержат от 10 до 1000 звезд, среди них гораздо больше молодых, чем старых, а самые старые едва ли насчитывают более 100 миллионов лет. Дело в том, что в более старых скопле­ниях звезды постепенно отдаляются друг от друга, пока не смешаются с ос­новным множеством звезд. Хотя тяготение до не­которой степени удерживает открытые скопления вместе, они все же доволь­но непрочны, и тяготение другого объ­екта может их разорвать.

Облака, в которых образуются звез­ды, сконцентрированы в диске нашей Галактики, и именно там обнаружива­ют открытые звездные скопления.

В противоположность открытым, ша­ровые скопления представляют собой сферы, плотно заполненные звездами (от 100 тыс до 1 млн). Размер типичного ша­рового скопления — от 20 до 400 све­товых лет в поперечнике.

В плотно набитых центрах этих скоп­лений звезды находятся в такой бли­зости одна к другой, что взаимное тя­готение связывает их друг с другом, об­разуя компактные двойные звезды. Иногда происходит даже полное слия­ние звезд; при тесном сближении на­ружные слои звезды могут разрушить­ся, выставляя на прямое обозрение цен­тральное ядро. В шаровых скоплениях двойные звезды встречаются в 100 раз чаще, чем где-либо еще.

Вокруг нашей Галактики мы знаем около 200 шаровых звездных скопле­ний, которые распределены по всему гало, заклю­чающему в себе Галактику. Все эти скопления очень стары, и возникли они более или менее в то же время, что и сама Галактика. Похоже на то, что скоп­ления образовались, когда части обла­ка, из которого была создана Галакти­ка, разделились на более мелкие фраг­менты. Шаровые скопления не расхо­дятся, потому что звезды в них сидят очень тесно, и их мощные взаимные силы тяготения связывают скопление в плотное единое целое.

Вещество (газ и пыль), находящееся в пространст­ве между звездами, называется межзвез­дной средой. Большая его часть скон­центрирована в спиральных рукавах Млечного Пути и составляет 10% его массы. В некоторых облас­тях вещество относительно холодное (100 К) и обнаружива­ется по инфракрасному излучению. Такие облака со­держат нейтральный водород, молекуляр­ный водород и другие радикалы, наличие которых можно обнаружить с помощью радиотелескопов. В областях вблизи звезд высокой светимости температура газа может достигать 1000—10000 К, и водород ионизован.

Межзвездная среда очень сильно разрежена (около 1 атома на см3). Однако в плотных облаках концентрация вещества может быть в 1000 раз выше средней. Но и в плотном облаке на кубический санти­метр приходится всего несколько со­тен атомов. Причина, по которой нам все же удается наблюдать межзвездное вещество, состоит в том, что мы ви­дим его в большой толще пространства. Размеры частиц составляют 0,1 мкм, они содержат углерод и кремний, поступают в межзвездную среду из атмосферы холодных звезд в результате взрывов сверхновых. Образующаяся смесь формирует новые звезды. Межзвездная среда имеет слабое магнитное поле и пронизано потоками космических лучей.

Наша Солнечная система находится в той области Галактики, где плотность межзвездного вещества необычайно низ­ка. Эта область называется Местным «пу­зырем»; она простирается во все стороны примерно на 300 световых лет.

    Вычисление угловых размеров Солнца для наблюдателя, находящегося на другой планете.

БИЛЕТ № 23

    Основные типы галактик и их отличительные особенности.

Галактики, системы звезд, пыли и газа пол­ной массой от 1 млн. до 10 трлн. масс Солнца. Истинная природа галактик была окончательно объяснена только в 1920-х гг. по­сле острых дискуссий. До этого времени при наблюдениях в телескоп они выглядели как диффузные пятна света, напоминающие туманности, но только с помощью 2,5-метрового телескопа-рефлектора обсерватории Маунт-Вилсон, впервые использованного в 1920-х гг., уда­лось получить изображения отд. звезд в туманности Андромеды и доказать, что это галактика. Этот же телескоп применялся Хабблом для измерения периодов цефеид в туманности Андромеды. Эти переменные звезды изучены достаточно хорошо, чтобы можно было точно определить расстояния до них. Расстояние до туманно­сти Андромеды составляет ок. 700 кпк, т.е. она лежит далеко за пределами нашей Га­лактики.

Имеется несколько типов галактик, основные — спиральные и эллиптичес­кие. Предпринимались попытки классифицировать их с помощью буквенных и цифровых схем, таких, как клас­сификация Хаббла, однако некоторые галактики не укладывают­ся в эти схемы, в этом случае их называют в честь астро­номов, которые впервые выделили их (например галактики Сейферта и Маркаряна), или дают буквенные обозначения клас­сификационных схем (например Галактики N-типа и cD-типа). Галактики, не имеющие отчетливой формы, классифицируются как неправильные. Происхождение и эволюция галактик еще до конца не поняты. Лучше всего изучены спиральные галактики. К ним относятся объекты, имеющие яркое ядро, из которого исходят спиральные рукава из газа, пыли и звезд. Большинство спиральных галактик имеют 2 рукава, исходящих из противоположных сторон ядра. Как правило звезды в них молодые. Это нормальные спирали. Ещё есть пересечённые спирали, у которых есть центральная перемычка из звёзд, соединяющая внутренние концы двух рукавов. Наша Г. так­же относится к спиральным. Массы почти всех спиральных Г. лежат в диапазоне от 1 до 300 млрд. масс Солнца. Около трёх четвертей всех галактик во Вселенной являются эллиптическими. Они имеют эллиптическую фор­му, лишенную различимой спиральной структуры. Их форма может изменяться от почти сферической до сигарообразной. По размеру они очень разнообразны – от карликовых массой несколько млн солнечных до гигантских массой 10 трлн солнечных. Самые большие из известных — Галактики cD-типа. Они имеют большое ядро или, возможно, несколько ядер, быстро движущихся относи­тельно друг друга. Часто это довольно сильные радиоисточники. Галактики Маркаряна были выделены советским астрономом Вениамином Маркаряном в 1967 г. Они являются сильными источ­никами излучения в ультрафиолетовом диапазоне. Галактики N-типа имеют похожее на звезду слабо светящееся ядро. Они также сильные радиоисточники и предположительно, эволюционируют в квазары. На фото сейфертовские галактики выглядят как нормаль­ные спирали, но с очень ярким ядром и спектрами с ши­рокими и яркими эмиссионными линиями, указываю­щими на присутствие в их ядрах большого кол-ва быстровращающегося горячего газа. Этот тип Галактик открыт американским астрономом Карлом Сейфертом в 1943 г. Галактики, наблюдаемые оптически и в то же время являющие­ся сильными радиоисточниками, называются радиогалактиками. К ним относятся сейфертовские Галактики, Г. сD- и N-типа и некоторые квазары. Механизм генерации энергии радиогалактик еще не понят.

    Определение условий видимости планеты Сатурн по данным «Школьного астрономического календаря».

БИЛЕТ № 24

    Основы современных представлений о строении и эволюции Вселенной.

В 20 в. было до­стигнуто понимание Вселенной как единого целого. Первый важный шаг был сделан в 1920-х гг., когда уче­ные пришли к выводу, что наша Галактика – Млеч­ный Путь – одна из миллионов галактик, а Солнце – одна из миллионов звезд Млечного Пути. Последующее изучение га­лактик показало, что они удаляются от Млечного Пу­ти, причем чем дальше они находятся, тем больше эта скорость (измеренная по красному смещению в ее спек­тре). Т.о., мы живем в расширяющейся Вселенной. Разбегание галактик отражено в законе Хаббла, согласно которому красное смещение галактики пропорци­онально расстоянию до нее.Кроме того, в самом крупном масштабе, т.е. на уровне сверхскоплений галактик, Вселенная имеет ячеистую структуру. Современная космология (учение об эволюции Вселенной) базируется на двух постулатах: Вселенная однородна и изотропна.

Существует несколько моделей Вселенной.

В модели Эйнштейна - де Ситтера расширение Вселенной продолжается бесконечно долго, в статической модели Вселенная не расширяется и не эволюционирует, в пульсирующей Вселенной циклы расширения и сжатия повторяются. Однако статическая модель наименее вероятна, не в её пользу говорит не только закон Хаббла, но и обнаруженное в 1965 году фоновое реликтовое излучение (т.е. излучение первичного расширяющегося раскаленной четырехмерной сферы).

В основе некоторых космологических моделей лежит теория «горячей Вселенной», изложенная ниже.

В соответствии с решениями Фридмана уравнений Эйнштейна 10–13 миллиардов лет назад, в начальный момент времени, радиус Вселенной был равен нулю. В нулевом объеме была сосредоточена вся энергия Вселенной, вся ее масса. Плотность энергии бесконечна, бесконечна и плотность вещества. Подобное состояние называется сингулярным.

В 1946 году Георгий Гамов и его коллеги разработали физическую теорию начального этапа расширения Вселенной, объясняющую наличие в ней химических элементов синтезом при очень высоких температуре и давлении. Поэтому начало расширения по теории Гамова назвали «Большым Взрывом». Соавторами Гамова были Р. Альфер и Г. Бете, поэтому иногда эту теорию называют «α, β, γ-теория».

Вселенная расширяется из состояния с бесконечной плотностью. В сингулярном состоянии обычные законы физики неприменимы. По-видимому, все фундаментальные взаимодействия при столь высоких энергиях неотличимы друг от друга. А с какого радиуса Вселенной имеет смысл говорить о применимости законов физики? Ответ – с планковской длины: