Смекни!
smekni.com

Особенности астрономии ХХ века (стр. 4 из 12)

11.4.2.4 Сверхновые звезды

При массе > 1,4 массы Солнца стационарное состояние звезды без внутренних источников энергии становится невозможным, т.к. давление не может уравновесить силу тяготения. Теоретически конечным результатом эволюции таких звезд должен быть гравитационный коллапс - неограниченное падение вещества к центру. В случае, когда отталкивание частиц и другие причины все же останавливают коллапс, происходит мощный взрыв - вспышка сверхновой с выбросом значительной части вещества звезды в окружающее пространство с образованием газовых туманностей.

Вспышки сверхновых были зафиксированы в 1054 г., 1572 г., 1604 г. Китайские летописцы следующим образом отметили это событие 4 июля 1054 г.: "В первый год периода Чи-хо, в пятую Луну, в день Чи -Чу появилась звезда-гостья к юго-востоку от звезды Тиен -Куан и исчезла более чем через год". А в другой летописи было записано: "Она была видна днем, как Венера, лучи света исходили из нее во все стороны, и цвет ее был красновато-белый. Так была видна она 23 дня". Подобные скупые записи были сделаны арабскими и японскими очевидцами. И уже в наше время было выяснено, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения. Как мы уже отмечали (см.: 6.2), вспышка сверхновой в 1572 г. в созвездии Кассиопеи была отмечена в Европе, изучалась и широкий интерес не ней общественности сыграл важную роль в расширении астрономических исследований и последующем утверждении гелиоцентризма. В 1885 г. появление сверхновой звезды было отмечено в туманности Андромеды. Ее блеск превышал блеск всей Галактики и оказался в 4 млрд. раз более интенсивным, чем блеск Солнца.

Систематические исследования позволили уже к 1980 г. открыть свыше 500 вспышек сверхновых! Со времени изобретения телескопа ни одна вспышка сверхновой звезды не наблюдалась в нашей звездной системе - Галактике. Астрономы наблюдают пока их только в других неимоверно далеких звездных системах, столь далеких, что даже в мощнейший телескоп звезду, подобную нашему Солнцу, в них нельзя было бы увидеть.

Взрыв сверхновой - гигантский по силе взрыв старой звезды, вызванный внезапным коллапсом ее ядра, который сопровождается кратковременным испусканием огромного количества нейтрино. Обладающие только слабым взаимодействием, эти нейтрино тем не менее разметали наружные слои звезды в космическом пространстве и образовали клочья облаков расширяющегося газа. При вспышке сверхновой звезды выделяется чудовищная энергия( порядка 1 0 n эрг, где n = 5 0 ч 5 2 ) .Вспышки сверхновых имеют фундаментальное значение для обмена веществом между звездами и межзвездной средой, для образования химических элементов (под воздействием мощных потоков нейтронов), а также для рождения первичных космических лучей.

Астрофизики подсчитали, что с периодом в 10 млн. лет сверхновые звезды вспыхивают в нашей Галактике, в непосредственной близости от Солнца. Дозы космического излучения при этом могут превышать нормальные для Земли в 7 тысяч раз! Это чревато серьезнейшими мутациями живых организмов на нашей планете. Так объясняют, в частности, внезапную гибель динозавров.

11.4.2.5. Нейтронные звезды

Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела - нейтронной звезды или черной дыры.

Открытые в 1967 г. новые объекты - пульсары отождествляются с теоретически предсказанными нейтронными звездами. Плотность нейтронной звезды очень высока, выше плотности атомных ядер - 1 0 n г/ куб. см, где n = 1 5. Температура такой звезды около 1 млрд. градусов. Но нейтронные звезды очень быстро остывают, светимость их слабеет. Зато они интенсивно излучают радиоволны в узком конусе по направлению магнитной оси. Для звезд, в которых магнитная ось не совпадает с осью вращения, радиоизлучение фиксируется в виде повторяющихся импульсов. Поэтому-то нейтронные звезды называют пульсарами. В настоящее время открыты сотни нейтронных звезд. Экстремальные физические условия в нейтронных звездах делают их уникальными естественными лабораториями, представляющими обширный материал для исследования физики ядерных взаимодействий, элементарных частиц и теории гравитации.

11.4.3. Черные дыры

Но если конечная масса белого карлика превышает 2-3 массы Солнца, то гравитационный коллапс непосредственно ведет к образованию черной дыры.

Черная дыра - область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость (параболическая скорость) для находящихся в этой области тел должна была бы превышать скорость света, т.е. из черной дыры ничто не может вылететь - ни излучение, ни частицы, ибо в природе ничто не может двигаться со скоростью, большей скорости света. Границу области, за которую не выходит свет, называют горизонтом черной дыры. Для того, чтобы поле тяготения смогло "запереть" излучение, создающая это поле масса звезды должна сжаться до объема с радиусом, меньшим т.н. гравитационного радиуса r = 2 G M / c І , где G - гравитационная постоянная, c - скорость света, M - масса звезды. Гравитационный радиус чрезвычайно мал даже для больших масс (например, для Солнца, имеющего массу 2 · 1 0 n г( n = 3 3 ) , r ~ 3 км).

Свойства черной дыры необычны. Например, особый интерес вызывает возможность гравитационного захвата черной дырой тел, прилетающих из бесконечности. В ньютоновской механике всякое тело, приближающееся из бесконечности к тяготеющей массе, описывает около нее параболу или гиперболу и (если не испытывает соударения с тяготеющей массой) снова улетает в бесконечность. Гравитационный захват здесь невозможен. Иначе обстоит дело в поле тяготения черной дыры. В достаточной близости от черной дыры траектория резко отличается от ньютоновской. Так, если скорость тела вдали от черной дыры много меньше световой и траектория его движения подходит близко к окружности с R = 2 r , то тело совершит много оборотов вокруг черной дыры, прежде чем снова улетит в космос. Если же тело подойдет вплотную к указанной окружности, то его орбита будет неограниченно навиваться на окружность. Тело окажется гравитационно захваченным черной дырой и никогда снова не улетит в космос. Если же тело подлетит еще ближе к черной дыре, то после нескольких оборотов иди даже не успев сделать ни одного оборота, оно упадет в черную дыру.

Когда фотоны либо частицы уходят за гравитационный радиус, они просто исчезают. Только во внешней области непосредственно у гравитационного радиуса они могут быть видимыми, причем создается впечатление, что они как бы скрываются за занавесом и больше не появляются. Звезде с массой, равной массе Солнца, требуется лишь несколько секунд для того, чтобы превратиться из обычной звезды в черную дыру, а если масса равна массе миллиарда звезд, то такой процесс займет несколько дней.

В черной дыре пространство и время взаимосвязаны необычным образом. Для наблюдателя внутри черной дыры направление возрастания времени является направлением уменьшения радиуса. Оказавшись внутри черной дыры наблюдатель не имеет больше сил вернуться обратно к поверхности, так же как он не может повернуть назад стрелки часов, отсчитывающих время его жизни. Он не может даже приостановиться в том месте, где оказался. Причина здесь простая: ничто не может остановить ход времени.

Черные дыры своим сильным гравитационным полем могут вызывать бурные процессы при падении в них газа. Газ при падении в поле тяготения черной дыры образует закручивающийся вокруг последней быстро вращающийся уплощенный диск. Например, в системе двойной звезды, одна из которых нормальная звезда, а вторая - черная дыра: черная дыра как бы "высасывает соки" из своего напарника. При этом колоссальная кинетическая энергия частиц, разгоняемых тяготением сверхплотного тела, частично переходит в рентгеновское излучение, и по этому излучению черная дыра может быть обнаружена. Вероятно, одна черная дыра уже обнаружена таким способом в рентгеновском источнике Лебедь Х-1.В целом же, по-видимому, на долю черных дыр и нейтронных звезд в нашей Галактике приходится около 100 млн. звезд.

Итак, черна дыра так сильно искривляет пространство, что она как бы отсекает себя от Вселенной. Она может буквально исчезнуть из Вселенной. Возникает вопрос, куда она может исчезнуть? Математический анализ показывает, что имеется разные решения. Но особенно интересно одной из них. В соответствии с ним, черная дыра может перемещаться в другую часть нашей Вселенной или даже внутрь иной вселенной. Таким образом, воображаемый космический путешественник мог бы использовать черную дыры для передвижения в пространстве и времени нашей Вселенной и даже проникновения в другую вселенную.

11.5. Острова Вселенной: галактики

11.5.1. Общее представление о галактиках и их изучении

Вскоре после изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, так и названные туманностями, видимые неизменно в одних и тех же местах в разных созвездиях. С помощью сильных телескопов Вильям Гершель и его сын Джон открыли множество таких туманных пятен, а к концу прошлого века у некоторых из них была обнаружена спиральная форма. Но что представляют собой эти туманности - долго оставалось загадкой. И только в 20-е годы ХХ века с помощью крупнейших в той время телескопов удалось разложить туманности на звезды. Стало ясно, что туманности - это не облака пыли, святящиеся отраженным светом, и не облака разреженного газа, а чрезвычайно далекие звездные системы, в которых звезд несравненно больше, чем в близких к нам шаровых скоплениях. Таким образом, галактики - это гигантские звездные системы (до ~ 1 0 n , где n = 1 3 , звезд). Такого же порядка (n = 13) являются и массы галактик по отношению к массе Солнца.