Смекни!
smekni.com

Лекции переходящие в шпоры Алгебра и геометрия (стр. 4 из 4)

(r-r1)(r2-r1)(r3-r1)=0 (10)

а ее координаты линейному уравнению:

(11)

ур-е (10) векторное, а ур-е (11) – координатные уравнения искомой плоскости.

37. Уравнение плоскости в отрезках.

Представив общее ур-е плоскости при A,B,C,D¹ 0 в виде:

и положив a= - D/A, b = -D/B, c = -D/C, получим уравнение плоскости в отрезках:

Найдем координаты точек М1, М2, М3 пересечения П с осями OX, OY, OZ

для М1 имеем

x=a, значит М1(а,0,0)

аналогично получаем:

М2(0,в,0): М3(0,0,с)

Значения а,в,с определяют величину отрезков, отсекаемых П на осях координат.

38. Расстояние от точки до плоскости

Пусть М*(x*,y*,z*) – заданная точка,

xcosa+ycosb+cosg-р=0 – заданное уравнение плоскости

расстояние от т. М* до плоскости П выч. по ф-ле:

d=d(M*, П) = |x*cosa+y*cosb+z* cosg| (13)

обозначим через d(M*, П)=r*×n0-p= x*cosa+y*cosb+z* cosg-p. Если т М* и т. О –начало координат лежат по разные стороны от П, то d>0, а если по одну сторону, то d<0, d - отклонение т. М* от плоскости П.

Если П задана общим уравнением, то расстояние от т. М* до П =

39. Угол между двумя плоскостями, условия параллельности и перпендикулярности двух плоскостей.

П1 и П2 две заданные плоскости

П1: A1x+B1y+C1Z+D1=0

П2: A2x+B2y+C2Z+D2=0

A12+B12+C12>0, A22+B22+C22>0

углом между двумя плоскостями будем называть любой из двух смежных двугранных углов образованных этими плоскостями. (в случае параллельности угол между ними равен 0 или П) один из этих двугранных углов = <j между нормальными в-рами: n1={A1,B1,C1} и n2={A2,B2,C2} этих плоскостей.

Отсюда вытекает:

П1 || П2 Û n1 || n2 Û n1=ln2 Û A1=lА2, B1=lB2, C1=lC2

условие параллельности плоскостей

П1 ^ П2 Ûn1^n2 Ûn1×n2=0 ÛA1A2+B1B2 + C1C2=0 условие перпендикулярности плоскостей.

40. параметрические уравнения прямой в пространстве.

Положение прямой в пространстве будет однозначно определено, если задать т. М0 на прямой (при помощи радиус-в-ра r0, относит некоторого фиксированного О) и направляющего в-ра S (S¹ 0), которому прямая параллельна.

Перемещение т. М прямой, соотв ее радиус в-ру ОМ=r ОМ=ОМ0+М0М (1)

М0М||S, M0M=t×S

r=r0+t×S (2)

Введем в пространство прямоугольную декартову систему координат, поместив начало координат в т. О.

т. М0 имеет коорд. (x0,y0,z0); т. M (x,y,z), напр. в-р S={m,n,k}, тогда ур-е записанное в коорд форме:

(3)

Ур-я (2) и (3) наз. параметрическими уравнениями прямой в пространстве в векторной и координатной форме соответственно. Числа m,n,k наз. направляющими коэффициентами этой прямой.

41. Каноническое уравнение прямой в пространстве

Уравнение (2), озн. коллинеарность в-ров r-r0 и S может быть записана и в терминах пропорциональности в-ров.

r-r0={x-x0,y-y0,z-z0}; S={m,n,k}

(4)

Ур-е (4) наз. каноническим ур-ем прямой в пространстве, в нём x0,y0,z0 – коорд. Т. М., лежащей на прямой, а m,n,k – координаты направляющего в-ра прямой.

Система ур-й (4) определяет прямую, как линию пересечения двух плоскостей.

Также как и для канонического уравнения на плоскости ур-е (4) говорит лишь о пропорциональности координат в-ров: r-r0 и S. Если например m=0, то ур-е переходит в ур-е x-x0=0,

если m=0 и n=0, то у р-е будет:

x-x0=0, у-у0=0,

42. Уравнение прямой в пространстве, проходящей через две заданные точки

Еси на до найтить урювнение примой проход. через т. М1(x1,y1,z1) и M2(x2,y2,z2)

Для решения в каноническом виде:

Надо знать коорд одной из точек нах на прямой и направляющий в-р. За т. на прямой можно принять любую , например, М1(x1,y1,z1), за направляющий вектор прямой –

вектор М1М2 = {x2-x1,y2-y1,z2-z1}

Уравнение искомой прямой следует из ур-я (4):

(5)

43. Общее уравнение прямой в пространстве. переход к каноническим уравнениям

Всякие две непараллельные между собой и не совпадающие плоскости, определяют прямую, как линию их пересечения.

Пусть ур-я этих плоскостей в прямоугольной декартовой системе координат OXYZ:

П1: A1x+B1y+C1z+D1=0

П2:A2x+B2y+C2z+D2=0

рассматриваемые совместно:

(6)

Эти уравнения наз. общими уравнениями прямой L, являющийся линией пересечения этих плоскостей. От общий уравнений прямой можно перейти к каноническим, для этого надо знать какую-нибудь точку прямой и её направляющий вектор. точку прямой наёдем из (6), выбирая одну из координат произвольно и решая полученную систему относительно оставшихся 2 координат. Для отыскания направляющего в-ра S прямой, заметим, что этот в-р, направленный по линии пересечения данных плоскостей должен быть перпендикулярен нормальным в-рам n1={A1,B1,C1} и n2{A2,B2,C2} так как векторное произведение n1х n2 перпендикулярно каждому из векторов n1 n2, то в качестве напр. в-ра можно взять в-р S= n1х n2.

Найденные координаты подставляются в ур-е (4)

44. Угол между прямыми в пространстве. Условия параллельности и перпендикулярности двух прямых

<j между двумя прямыми L1, L2 = углу между направляющими в-рами:S1={m1,n1,k1} и S2={m2,n2,k2}, посему:

(8)

Возможные случаи:

1 L1 || L2 отсюда вытекает S1 || S2

(9)

2 L1 ^L2 отсюда вытекает S1 ^S2 = 0ÛÛm1×m2+n1×n2+ к1×к2=0

45. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.

Если дана прямая:

и плоскость:

П: Ax+By+Cz+D=0

<j между прямой и плоскостью называют наименьший из углов, образованных прямой с её проекцией на эту плоскость.

Угол буде равен:

a=углу между нормальным в-ром Плоскости П n и направляющим в-ром прямой S.

возможны случаи:

1 L || П отсюда вытекает S^nÛS×n = 0

Am+Bn+Ck=0 –уравнение параллельности прямой и плоскости.

2 L1 ^L2 отсюда вытекает n || S

- уравнение перпендикулярности прямой и плоскости.