Смекни!
smekni.com

Теория флюксий (стр. 2 из 3)

Решение первой проблемы

Решение первой проблемы Ньютон предлагает в следующем виде:

«Расположи уравнение, которое выражает данное соотношение, по степеням какой-либо из входящих в него текущих величин (например x) и члены его помножь на какую-либо арифметическую прогрессию, а затем на

. Это действие произведи отдельно для каждой из текущих величин. Затем положи сумму всех этих произведений равной нулю, и ты получишь искомое уравнение». Данная рекомендация иллюстрируется примерами, аналогичными примеру 1.

Решение второй проблемы

Для решения второй проблемы Ньютон предлагает следующие шаги:

Частное решение.

«Так как эта проблема обратна вышеизложенной, то ее можно решать с помощью противоположных действий, а именно, члены помноженные на

, должны быть расположены по степеням x и поделены на
, а затем - на показатели их степеней или же на какую-либо другую арифметическую прогрессию. После того как эти действия будут произведены и для членов, помноженных на
,
или
, получившуюся при этом сумму по отбрасывании лишних членов следует положить равной нулю.

Пример 2.

Предложено уравнение

Действие производится следующим образом:

Поэтому сумма

выражает искомое соотношение величин x и y.

Здесь следует заметить, что хотя член axy встречается дважды, я все же не выписываю его дважды в сумме

но один из них отбрасываю как лишний. Таким образом, если какой-либо член встречается дважды (или еще больше раз в том случае, если он получается от различных флюэнт), то в сумме членов его следует выписывать лишь один раз.»

( Здесь описана следующая процедура нахождения частного решения дифференциального уравнения

Уравнение записывается в виде

откуда вытекает наличие решения

Произвольной постоянной Ньютон не добавляет).

Далее Ньютон пишет: «Прочие необходимые замечания я оставляю на долю проницательности самого мастера, тем более, что было бы излишним чересчур долго останавливаться на этом предмете, так как этим приемом проблема может быть решена не всегда. Я добавляю только одно замечание, а именно, что, найдя таким методом зависимость между флюэнтами, ты можешь затем согласно проблеме I вернуться к предложенному уравнению, содержащему флюксии, и тогда наверное узнаешь, правильно ли произведено действие или нет.

Предпослав все это беглым образом, я приступаю к общему решению.

Подготовление к решению.

Прежде всего следует заметить, что в предложенном уравнении знаки флюксий в отдельных членах должны быть одинакового измерения (ибо флюксии суть величины иного рода, чем те, для которых они служат флюксиями)»

Речь идет о том, что уравнение должно быть однородным, т. е. все его слагаемые должны измеряться в одних и тех же единицах измерения. Во времена Ньютона выражение вида x2 + x считалось неправильным, поскольку нельзя "складывать площадь и длину"

«Если в каком-либо случае дело обстоит иначе, то флюксию какой-либо флюэнты следует принять за единицу и помножить на нее низшие члены столько раз, сколько требуется для того, чтобы знаки флюксий привелись во всех членах к одинаковому числу измерений. Уравнения, которые содержат только флюэнты, имеющие везде одинаковое число измерений, всегда можно привести к такому виду, чтобы в одной части находилось отношение флюксий (например,

или
или
и т. д.), а в другой значение этого отношения, выраженное в простых алгебраических членах (таким образом, левая часть уравнения будет зависеть от производной y по x), как, например,

В том случае, когда не может быть применено приведенное выше частное решение, уравнения всегда следует представлять в этой форме.

Поэтому, когда в значении этого отношения имеется какой-либо член с составным знаменателем или радикалом или когда это отношение представляет собой корень неявного уравнения, то прежде чем приступить к действиям, ты должен совершить приведение либо посредством деления, либо с помощью извлечения корня, либо с помощью решения неявного уравнения, как мы это объясняли выше.»

Речь идет, по существу, о хорошо известном методе Ньютона решения нелинейных уравнений, описываемом Ньютоном в предыдущем разделе трактата в форме представления решений в виде ряда.

«Пусть, например, предложено уравнение

Прежде всего приведение его дает

или

При первом предположении я обращаю выражение y/(ax), у которого знаменатель есть составное выражение ax, в бесконечный ряд простых членов:

(приведение это производятся делением числителя y на знаменатель ax), откуда получаю

с помощью чего и следует определить отношение между x и y.

Таким же образом, если данное уравнение есть

или

или после дальнейшего преобразования

то я извлекаю квадратный корень из членов 1/4+xx и получаю бесконечный ряд

При подстановке его вместо

я буду иметь

или

смотря по тому, прибавляю ли

к 1/2 или вычитаю из нее.»

В этих примерах Ньютон описывает первый этап своего метод решения дифференциальных уравнений. В современной терминологии это приведение уравнения к нормальной форме и разложение правой части в степенной ряд.

«Далее, чтобы легче было отличать одну из флюэнт от других, можно с достаточным основанием ту из флюксий, которая находится в числителе отношения, назвать величиной отнесенной, а ту, которая стоит в знаменателе и с которой сравнивается первая, соотнесенной, -зависимая и, соответственно, независимая переменные в дифференциальном уравнении; и этими же терминами можно соответственно называть и флюэнты. Для лучшего понимания дальнейшего можно представлять себе, что соотнесенная величина есть время или, лучше, какая-либо равномерно текущая величина, с помощью которой выражается и измеряется время, а другая, именно отнесенная, величина есть пространство, проходимое за это время вещью или точкой, обладающей некоторым ускоренным или замедленным движением. Сущность проблемы заключается тогда в определении пройденного за все время пути, если известна скорость для любого момента времени.»

Классификация уравнений в рамках проблемы и их решение

Уравнения, относящиеся к этой проблеме, Ньютон разделил на три рода:

1. уравнения вида F(x,

,
) = 0, приводящиеся к виду f(x,dy/dx) = 0 «…те уравнения, в которых имеются две флюксии величин и только одна из флюэнт».

2. уравнения вида F(x,y,

,
) = 0, приводящиеся к виду f(x, y, dy/dx) = 0. «…те, которые содержат обе текущие величины с их флюксиями.»