Смекни!
smekni.com

Теория групп — наука о совершенстве (стр. 3 из 4)

Пусть G — произвольная группа, H — ее подгруппа и g — произвольный элемент группы G. Множество Hg = {hg | h

H} называется смежным классом (правым смежным классом) элемента g. Введем отношение g1 ≡ g2 (mod H) на множестве элементов группы G по правилу: g1 ≡ g2 (mod H) в том и только в том случае, если Hg1 = Hg2. Использование обозначения, сходного с отношением делимости для целых чисел (см. выше) неслучайно, поскольку отношение делимости является частным случаем равенства смежных классов. Действительно, в качестве группы G берется множество
целых чисел по сложению, а в качестве подгруппы H берется подмножество k
чисел, которые делятся на k. Очевидно, что определенное нами отношение является эквивалентностью, множество классов эквивалентности обозначается через G / H, мощность |G / H| множества классов эквивалентности обозначается еще как |G : H| и называется индексом подгруппы H в группе G. Очевидно, что для любого g
G справедливо |Hg| = |H|, откуда мы сразу получаем важную теорему Лагранжа: |G| = |G : H| · |H|, в частности порядок подгруппы всегда делит порядок группы.

На множестве G / H можно естественным образом определить операцию умножения: Hg1 · Hg2 : = Hg1 · g2. Для того чтобы определение было корректным, т. е. чтобы выполнялось равенство множеств Hg1 · Hg2 = {h1g1 · h2g2 | h1, h2

H} и Hg1 · g2 = {hg1 · g2 | h
H}, необходимо и достаточно, чтобы для любого g
G выполнялось равенство g–1Hg = {g–1hg = h | h
H} = H (это условие мы будем коротко записывать HG
H). Выражение g–1Hg называется сопряжением с помощью элемента g и часто обозначается Hg. Выражение gHg–1 = Hg–1 мы будем записывать gH. Подгруппа H, удовлетворяющая условию HG
H, называется нормальной подгруппой группы G (обозначается H
G), а получившаяся группа G / H называется факторгруппой группы G по подгруппе H. Понятия нормальной подгруппы и факторгруппы являются одними из важнейших в теории групп, поскольку позволяют частично сводить изучение групп к меньшим группам (частично, так как по данным H и G / H группа G определяется неоднозначно). Группа, не содержащая нормальных подгрупп, называется простой.

Очевидно, что пересечение любого количества подгрупп вновь является подгруппой. Это позволяет нам определить подгруппу, порожденную множеством M, как наименьшую подгруппу, содержащую подмножество M, т. е. пересечение всех подгрупп группы G, содержащих множество M. Подгруппа, порожденная множеством M, будет обозначаться

M
. Легко проверить, что
M
является множеством всевозможных произведений элементов из M и обратных к ним. Группа, порожденная одним элементом a называется циклической, а ее порядок |
a
| : = |a| называется порядком элемента a. Легко проверить, что порядок элемента — это такое наименьшее число n, для которого
равно e. Из теоремы Лагранжа следует, что порядок элемента всегда делит порядок группы.

В конце данного раздела мы приведем понятие изоморфизма групп. Если G, H — группы, то отображение φ : G → H, сохраняющее операцию (т. е. для всех g1, g2

G выполнено (g1 · g2)φ = g1φ · g2φ), называется гомоморфизмом, множество Ker(φ) = {g
G | gφ = e} называется ядром гомоморфизма, а множество Gφ = {gφ | g
G} называется образом гомоморфизма. Если Ker(φ) = {e}, а Gφ = H, т. е. если φ является биекцией, то отображение φ называется изоморфизмом, а группы G и H изоморфными (обозначается G
H). Теорема о гомоморфизмах утверждает, что H = Ker(φ) — нормальная подгруппа группы G и Gφ
G / H. Изоморфизм можно мыслить для себя, как такую «похожесть» двух групп, что мы их не различаем (хотя реально они могут быть разными множествами). Таким образом, теория, строго говоря, изучает классы изоморфизма групп. Заметим, что и в обыденной жизни мы тоже нередко устанавливаем изоморфизмы более или менее высокого уровня абстракции. Так, например, есть класс изоморфизма мебели, называемый понятием «шкаф» и мы по некоторым признакам безошибочно определяем, относится ли данный объект к «шкафам» или нет. Когда нам не хватает столь высокого уровня абстракции, мы спускаемся к более низкому уровню и начинаем делить шкафы на «кухонные», «книжные», «платяные» и т. д. Понятие изоморфизма для групп — это как раз тот инструмент, с помощью которого мы на нашем уровне абстракции различаем или отождествляем объекты.

Примеры групп

Примерами групп, известных нам с начальной школы, являются целые, рациональные, действительные, комплексные числа по сложению, ненулевые рациональные, действительные, комплексные числа по умножению. Все эти группы являются абелевыми. Другой важный пример групп дает нам следующая конструкция. Пусть X — произвольное множество и SymX — множество всевозможных биекцией множества X на себя. Зададим умножение на SymX как композицию. Тогда SymX относительно операции композиции является группой и называется симметрической группой на множестве X или группой подстановок (иногда используется также термин группа перестановок, но нам он кажется неудачным, об этом чуть ниже). Если множество X конечно и |X| = n, то можно считать, что X = {1, ..., n} и SymX обозначается за Symn. Если Ψ — некоторое свойство отображений, которое сохраняется при композиции, то подмножество отображений, удовлетворяющих свойству Ψ, группы SymX образует подгруппу группы SymX. Покажем, что композиция отображений удовлетворяет аксиоме ассоциативности (ГР1) (проверка остальных аксиом существенно проще, они вытекают из определения биекции). Для того, чтобы доказать, что композиция отображений ассоциативна, необходимо сначала понять, когда же отображения равны. Несмотря на очевидность определения, оно нередко вызывает сложности. Отображения φ : A → B и ψ : A → B (где A, B — произвольные множества) равны, если для любого x

A его образы xφ и xψ равны. Пусть теперь φ, ψ, χ
SymX и x
X. Тогда x((φψ)χ) = (x(φψ))χ = ((xφ)ψ)χ, с другой стороны, x(φ(ψχ)) = (xφ)(ψχ) = ((xφ)ψ)χ, что доказывает ассоциативность композиции.

Этот пример не только позволяет строить большое количество различных групп (чуть ниже мы убедимся, что все группы), но и показывает широкую область применения теории групп. Везде, где есть хоть какая-то симметрия (т. е. биекция), немедленно возникают и группы. Задачи о построении с помощью циркуля и линейки, о разрешимости алгебраических уравнений в радикалах, дифференциальных уравнений в первообразных и т. д. естественным образом сводятся к задачам в теории групп. Различные комбинаторные задачи сводятся к подсчету объектов, удовлетворяющих некоторым свойствам и вновь к теории групп.

Если G — группа, X — множество и задан гомоморфизм φ : G → SymX, то говорят, что группа G действует на множестве X. Если Ker(φ) = {e}, то действие называется точным. Для «облегчения» обозначений мы будем отождествлять g с его образом gφ и для произвольного x

X его образ относительно gφ будем записывать xg. Введем отношение эквивалентности ~ на X по правилу: элементы x, y
X являются эквивалентными, если существует такой g
G, что xg = y. Классы эквивалентности называются орбитами группы G. Говорят, что группа G действует транзитивно (а представление является транзитивным), если существует лишь одна орбита. Гомоморфизм φ : G → SymX называется подстановочным представлением группы G (именно из-за термина «подстановочное представление» термин «группа перестановок» считается неудачным, так как термин «перестановочное представление» имеет другое значение). Если Ker(φ) = {e}, то представление называется точным.