Смекни!
smekni.com

Производная и ее применение в алгебре, геометрии, физике (стр. 5 из 7)

2°. Определения: 1) β называется бесконечно малой высшего порядка малости, чем α, если предел отношения β/α равен нулю, т. е. если

limβ/α =0;

2) β называется бесконечно малой низшего порядка малости, чем α, если

limβ/α = ∞;

3) β и α называются бесконечно малыми одинакового порядка малости, если предел их отношения есть число k, отличное от нуля, т. е. если

limβ/α = k, где k ≠ 0 и k ≠ ∞

4) β и α называются несравнимыми бесконечно малыми, если предела их отношения не существует.

3°. Примеры. 1. В рассмотренном выше примере limβ/α = 0, β высшего порядка малости, чем α, a limα/β = ∞ и α низшего порядка, чем β.

2. α =1—х и β=1— x2 —бесконечно малые, если х→1. Отношение β/α=(1- x2)/(1-x) = 1+x.

Значит, 1—х и 1—x2 —бесконечно малые одинакового порядка малости при х→1.

3. Сравним 1 —cosx с х при x→ 0.


т. е. 1—cos x при х → 0 есть бесконечно малая высшего порядка малости, чем х.

Дифференциал функции

1°. Определение. Дифференциалом (dy) функции y=f(x) называется произведение значения производной f '(х) на произвольное приращение ∆x аргумента х, т. е.


(I)

2°. Для получения значения дифференциала функции необходимо знать два числа: начальное значение аргумента, х, и его приращение, ∆x.

Пример. Вычислить дифференциал функции у = x2 при изменении значения аргумента х от 3 до 3,1.

Решение. dy=f '(х)* ∆х. Найдем dy сначала для произвольных значений х и ∆x.

f '(x) = (x2)' =2x.

Поэтому

dy=2x*∆x.

Начальное значение аргумента х=3, приращение его ∆x = 3,1 — 3 = 0,1. Подставляя эти значения в выражение dy находим:

dy =2*3*0,1=0,6.

Для данного значения независимого переменного х дифференциал функции f(x) есть линейная функция приращения независимого переменного ∆х.

3°. Рассмотрим геометрический смысл дифференциала функции. На черт. в точке х проведена касательная к графику функции y=f(x). Из ∆MPT следует, что

PT = MP*tgφ = ∆x*f '(x).

Но по определению f '(х) *∆x = dy, поэтому PT = dy.

Дифференциал функции f(x) при данном значении х геометрически выражается приращением ординаты касательной к графику функции y=f(x) в точке х.

4°. Дифференциал dy и приращение ∆у вообще не равны между собой. На черт. dy = PT менее ∆y=PQ.

Очевидно, dy может быть и более ∆y. Это будет, например, если поднимающаяся кривая MN будет вогнута вниз.

5°. Пример. Для функции у=x2 при изменении х от 3 до 3,1 приращение ∆y = 2x*∆x + + ∆x2 = 2*3*0,1 + 0, 12 = 0, 61 Дифференциал dy = 2х *∆x = 2*3 * 0, 1 = 0,6. Принимая dy за приближенное значение ∆у, имеем: абсолютная погрешность приближения равна разности ∆у—dy=0,01, а относительная погрешность приближения есть отношение:

(∆y—dy)/dy=00,1/0,60=1,7%

6°. Разность между приращением и дифференциалом функции, ∆у—dy, высшего порядка малости, чем приращение аргумента, ∆x.

Действительно, отношение ∆y/∆x отличается от своего предела f '(x) на бесконечно малую α, причем α → 0 при стремлении ∆x к нулю,

∆y/∆x — f '(x)= α.

Производя вычитание в левой части равенства, получаем:

(∆y-f '(x)*∆x)/∆x = α, или (∆у - dy) ∆x= α,


7°. Из сказанного следует: дифференциал функции есть приближенное значение ее приращения с относительной погрешностью, стремящейся к нулю вместе с приращением аргумента.

8°. Из изложенного следует, что дифференциал dy функции y=f(x) обладает двумя свойствами:

1) dy пропорционален ∆x (dy = k∆x, где k=y');

2) отношение (∆y—dy)/∆x стремится к нулю при стремлении ∆x к нулю.

Обратно. Если величина z обладает двумя свойствами:

1) z=k∆x и 2) то z есть дифференциал функции у.

Доказательство. Внося из (1) значение z во (2), имеем:

т. е. k = y',

а следовательно,

z = k∆x = y’∆x,

т. е. z есть дифференциал функции у.

Таким образом, эти два условия полностью определяют дифференциал.

Дифференциал аргумента. Производная как отношение дифференциалов

1°. Определение. Дифференциалом (dx) аргумента х называется, его приращение, ∆x:

dx = ∆х (II)

Может быть, некоторым основанием к этому служит то, что дифференциал функции у=х и приращение ее аргумента совпадают. Действительно,

dy = (x)' ∆x, или dy = ∆x.

Но так как

dy = dx, то dx = ∆x,

т.е. дифференциал функции у =х и приращение ее аргумента совпадают.

2°. Внеся в формулу (I) значение ∆x=dx, получаем:

(III)

т. е. дифференциал функции есть произведение ее производной на дифференциал аргумента.

3°. Формула (III) обладает замечательным свойством, именно: формула dy = f '(x)dx справедлива и в том случае, если x не является независимой переменной величиной, а является функцией другого аргумента, например и.

Действительно, если х есть функция от и, то f(x) есть сложная функция от u приращение dx обусловлено приращением ∆u, и dy надо вычислять по формуле;

dy = f 'u (x)* ∆u.

Но

f 'u (x)= f’x (x)* x’u

Значит,

dy = f’(x)—x'u * ∆u.

Но так как, по определению,

x'u ∆u = dx,

то, следовательно,

dy = f '(x)dx.

4°. Пример. Найти дифференциал функции:

_____________________

у = √ (e2x—1).

Решение. По формуле (III)

dy = у'*dx.

Находим у': ________ ________

y’ = e2x*2/( 2√ (e2x—1)) = e2x/ √ (e2x—1).

Значит _______

dy = e2x*dx/ √ (e2x—1)

5°. Из формулы (III) следует;

f’(x)=dy/dx,

т. е. производная функции равна отношению дифференциала функции к дифференциалу аргумента. Это иллюстрирует черт., где

dy/dx = PT/MP = tgφ=f '(x)

для произвольного значения dx = MP.

Приложения понятия дифференциала к приближенным вычислениям

1°. Разность ∆y—dy—бесконечно малая высшего порядка малости, чем ∆x, поэтому при достаточно малом ∆x


(IV)

Это означает, что при малых изменениях аргумента (от начального значения х) величину изменения функции y=f(x) можно приближенно считать пропорциональной величине изменения аргумента с коэффициентом пропорциональности, равным значению производной f '(x); кривую y=f (x) при этом можно приближенно заменить касательной к ней в точке х.

Так как ∆у = f(х + ∆x)—f (x), то, заменяя в формуле (IV) ∆у его выражением, имеем: f(x+∆x) - f(x) ≈ f '(x)* ∆x


(V)

В математике производную применяют для:

Исследования функции на монотонность, экстремумы.

Нахождения касательной к графику.

Нахождения наибольших, наименьших значений функций.

Нахождения дифференциала для приближенных вычислений.

Для доказательства неравенств.

Рассмотрю некоторые примеры применения производной в алгебре, геометрии и физике.

Задача 1. Найти сумму 1+2*1/3+3(1/3)2+…+100(1/3)99;

Решение.

Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.

Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.

Ясно, что f ’(x)=g(x).

f(x) — сумма геометрической прогрессии.

Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,

g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.

Подставлю x = 1/3.

Ответ: 0,25(9—205*3-99)

Задача 2. Найти сумму 1+2*3+3*32+…+100*399;

Решение.

Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.

Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.

Ясно, что f ’(x)=g(x).

f(x) — сумма геометрической прогрессии.

Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,

g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.

Подставлю x = 3.

Ответ: ≈ 2,078176333426855507665737416578*1050.

Задача 3. Найдите площадь треугольника AMB, если A и B — точки пересечения с осью OX касательных, проведенных к графику y = (9—x2)/6 из точки M(4;3).

Решение.

т. A = укас1∩OX Решение:

т. B = укас2∩OX укас =y(x0)+у’(x0)(x—x0);

y = (9—x2)/6 y’(x0) = -2x*1/6 = -x/3;

M(4;3)________ т.к. укас проходит через M(4;3), то

SAMB —? 3 = (9—x02) — (4—x0)* x0/3 | *3

18 = 9—x02—2x0(4—x0);

x02—8 x0—9 = 0;

Д/4 = 16 + 9;

x0 = 4+5 = 9;

x0 = 4—5 = -1

укас1 = -12 — (x—9)*9/3 = -3x+15;

укас1 = 4/3 + (x+1)*1/3 = x/3+5/3;

A(5;0); B(-5;0);

AM = √10 (ед.);

AB = 10 (ед.);

BM = 3√10 (ед.);

p — полупериметр; __

p = (4√10 + 10)/2 = 2√10 + 5;

__ __ __ __ __ __

S = √(2√10 + 5) (2√10 + 5—√10) (2√10 + 5—3√10) (2√10 + 5—10) =

= √(2√10 + 5)(√10 + 5)(5—3√10)(2√10—5) =

= √(40—25)(25—10) = 15 (ед2);

Ответ: 15 (ед2).

Задача 4. Какая наименьшая плоскость может быть у треугольника OAB, если его стороны OA и OB лежат на графике функции y = (|x|—x)/2, а прямая AB проходит через точку M(0;1).

Решение:

-x, x<0

y =

0, x>0

A(a;-a); B(b;0);_

AO = |a|√2 = -a√2 (т.к. a<0);

BO = b;

Для т. B:

у1 = kx +z;

т.к. у1—график линейной пропорциональности, проходящий через т M(0;1), то z = 1.

0=kx+1;

k=-1/b;

Для т. A:

у1=kx+1;

-a=kx+1;

k=(-1-1a)/a;

у1A= у1B

(-a—a)/a = -1/b;

b+ab=a;

a(1—b)=b;

a = b/(1-b);

S∆AOB=0,5*AO*OB*sin/_AOB

ÐAOB =180o—45o = 135o

S∆AOB=0,5*(√2/2)* (-a)b√2 = -ab/2;

S∆AOB = -b2/(2(1—b)) = b2/(2(1—b)); D(y): b>1(т.к. при b<1 не образует ∆AOB.);

т.к. функция непрерывна и дифференцируема на b>1, то найду ее производную: