Смекни!
smekni.com

Нестандартный анализ (стр. 2 из 7)

Методы Лейбница господствовали в Европе в течение более чем 50 лет. Однако во второй половине XVIII столетия начались поиски альтернативных путей построения анализа. Лагранж предлагал рассматривать разложения функций в степенные ряды, предполагая, что любая или почти любая функция может быть разложена в такой ряд. Даламбер предлагал понятие предела в качестве исходного для построения математического анализа. Он писал:

“Говорят, что одна величина лявляется пределом другой, если вторая может приблизиться к первой ближе, чем на любую заданную величину... Теория пределов является основанием подлинной Метафизики дифференциального исчисления... В дифференциальном исчислении речь идет не о бесконечно малых величинах, как это обычно утверждают; речь идет лишь о переделах конечных величин... Термином “бесконечно малая» пользуются лишь как сокращением …»

Эти высказывания даламбера выглядят как изложение современной точки зрения на пределе. Можно было бы предположить, что с этого времени понятие бесконечно малых будет полностью устранено. Это, однако, не так. Коши, рассматриваемый обычно как основатель современного подхода к построению анализа, использует понятие бесконечно малой величины. Пытаясь объяснить в современных терминах, что Коши называет “величиной”, можно предположить, что величина — это функция с действительными значениями, определенная на упорядоченном множестве без наибольшего элемента. Коши, однако, отнюдь не сводит величины к функциям. Наоборот, он говорит о функции как о соотношении, связывающем две величины. В его изложении бесконечно малые и пределы фигурируют как равноправные компоненты обоснования анализа.

2. Робинсон и «новая история» нестандартного анализа

В 1961 г. появилась статья А. Робинсона «Нестандартный анализ» в Трудах Нидерландской академии наук. В статье намечены как основные положения нестандартного анализа, так и некоторые его приложения (например, к аналитической механике). В этой статье Робинсон, в частности, писал: “Наша главная цель – показать, что эти модели дают естественный подход к старой почтенной проблеме построения исчисления, включающего бесконечно большие и бесконечно малые количества. Как хорошо известно, использование бесконечно малых, настойчиво защищаемое Лейбницем и без колебании принимаемое Эйлером, было дезавуировано с появлением методов Кошн, поставивших математический анализ на твердую основу”.

Итак, до 1961 г. понятие бесконечно малой поятоянной величины, бесконечно малого числа, интерпретировалось как в лучшем случае нестрогое, а в худшем — бессмысленное. Робинсон впервые обнаружил, что этому понятию можно придать точный математический смысл.

В течение последующих восьми лет вышли в свет три монографии, излагающие нестандартную теорию: в 1962 г.– книга У. Л. Дж. Люксембурга “Нестандартный анализ. Лекции о робинсоновой теории бесконечно малых и бесконечно больших чисел”, в 1966 г.— книга самого А. Робинсона “Нестандартный анализ”, в 1969 г. — книга М. Маховера и Дж. Хиршфелда “Лекции о нестандартном анализе”] (из 77 страниц этих “Лекций” действительной прямой отведено немногим болеее двух: «нестандартный анализ» понимается здесь в самом широком смысле).

Наибольший резонанс вызвала книга Робинсона. В девяти первых главах этой монографии содержалось как построение необходимого логико-математического аппарата, так и многочисленные приложения – к дифференциальному и интегральному исчислению, к общей топологии, к теории функций комплексного переменного, к теории групп Ли, к гидродинамике и теории упругости.

В 1966 г. появилась статья А.Р. Бернстейна и А. Робинсона, в которой впервые методами нестандартного анализа было получено решение проблемы инвариантных пространств для полиномиально компактных операторов. В очерке П.Р. Халмоша “Взгляд в гильбертово пространство” в качестве проблемы фигурирует поставленная К.Т. Смитом задача о существовании инвариантного подпространства для таких операторов Т в гильбертовом пространстве

, для которых оператор
компактен. А.Р. Бернстейном и А. Робинсоном методами нестандартного анализа было доказано, что любой полиномиально компактный оператор в гильбертовом пространстве имеет нетривиальное инвариантное замкнутое подпространство.

Приложения нестандартного анализа в математике охватывают обширную область от топологии до теории дифференциальных уравнений, теории мер и вероятностей. Что касается внематематических приложений, то среди них мы встречаем даже приложения к математической экономике. Многообещающим выглядит использование нестандартного гильбертова пространства для построения квантовой механики. А в статистической механике становится возможным рассматривать системы из бесконечного числа частиц. Помимо применений к различным областям математики, исследования в области нестандартного анализа включают в себя и исследование самих нестандартных структур.

В 1976 г. вышли сразу три книги по нестандартному анализу: “Элементарный анализ” и “Основания исчисления бесконечно малых” Г. Дж. Кейслера и “Введение в теорию бесконечно малых” К. Д. Стройана и В. А. Дж. Люксембурга.

Быть может, наибольшую пользу нестандартые методы могут принести в области прикладной математики. В 1981 г. вышла книга Р. Лутца и М. Гозе “Нестандартный анализ: практическое руководство с приложениями”. В этой книге после изложения основных принципов нестандартного анализа рассматриваются вопросы теории возмущений.

В настоящее время нестандартный анализ завоёвывает всё большее признание. Состоялся ряд международных симпозиумов, специально посвященных нестандартному анализу и его приложениям. В течении последнего десятилетия нестандартный анализ (точнее, элементарный математический анализ, но основанный на нестандартном подходе) преподавался в ряде высших учебных заведений США.

3. Бесконечно малые величины

Один из наиболее принципиальных моментов нестандартного анализа состоит в том, что бесконечно малые рассматриваются не как переменные величины (т. е. не как функции, стремящиеся к нулю, как учат современные учебники), а как величины постоянные. Такой подход хорошо согласуется как с интуицией естествоиспытателя, так и с реальной историей зарождения математического анализа. Что касается интуиции, то достаточно раскрыть любой учебник физики, чтобы натолкнуться на бесконечно малые приращения, бесконечно малые объемы и т.п. Все эти величины мыслятся, разумеется, не как переменные, а просто как очень маленькие, почти равные нулю. Было бы неправильно считать подобного рода интуицию присущей лишь авторам учебников физики. Вряд ли какой-то математик воспринимает (наглядно) элемент дуги ds иначе, чем “очень маленькую дугу”. Любой математик, составляя соответствующее дифференциальное уравнение, скажет, что за бесконечно малое время dt точка прошла бесконечно малый путь dx, а количество радиоактивного вещества изменилось на бесконечно малую величину dN.

Что же касается истории математического анализа, то в наиболее явной форме излагаемый подход проявился у одного из основоположников этой науки — Лейбница. В мае 1984 г. исполнилось 300 лет с того дня, как символы dx и dy впервые появились на страницах математических публикаций, а именно в знаменитом мемуаре Лейбница “Новый метод...”. Именно Лейбниц яснее других ощущал бесконечно малые величины постоянными (хотя и воображаемыми, идеальными) величинами особого рода, и именно Лейбниц сформулировал правила оперирования с бесконечно малыми в виде исчисления.

Какие положительные числа следует называть бесконечно малыми?

Первый ответ таков: положительное число e называется бесконечно малым, если оно меньше всех положительных чисел. Однако бесконечно малых в этом смысле положительных чисел не бывает: ведь если число меньше всех положительных чисел и само положительно, оно должно быть меньше самого себя. Попытаемся исправить положение, потребовав, чтобы e было меньше всех других положительных чисел, но больше нуля, т. е. чтобы e было наименьшим в множестве положительных чисел. На числовой оси такое e должно изобразиться самой левой точкой множества (0, +¥). К сожалению, числа e с указанными свойствами тоже нет и не может быть: если e положительно, то число e/2 будет положительным числом, меньшим e. (Согласно обычным свойствам неравенств для всякого а > 0 выполняются неравенства 0 < а/2 < а). Так что если мы не хотим отказываться от привычных нам свойств действительных чисел (например, от возможности разделить любое число на 2 или от возможности умножить любое неравенство на положительное число), но хотим иметь бесконечно малые числа, то приведенное определение бесконечной малости не годится.

Более изощренное определение бесконечной малости числа e > 0, которое мы будем использовать в дальнейшем, таково. Будем складывать число e с самим собой, получая числа e, e + e, e + e+ e, e + e + e +e и т. д. Если все полученные числа окажутся меньше 1, то число e и будет называться бесконечно малым. Другими словами, если e бесконечно мало, то сколько раз ни откладывай отрезок длины e вдоль отрезка длины 1, до конца не дойдешь. Наше требование к бесконечно малому e можно переписать и в такой форме (поделив на e): 1<1/e, 1+1<1/e, 1+1+1<1/e,…

Таким образом, если число число e бесконечно мало, то число 1/e бесконечно велико в том смысле, что оно больше любого из чисел 1, 1+1, 1+1+1, 1+1+1+1 и т. д. Так что если мы начнем измерять отрезок длиной 1/e с помощью эталона длины (т.е. откладывая последовательно отрезки единичной длины), то процесса измерения никогда не закончим.