Смекни!
smekni.com

Тождественные преобразования алгебраических выражений (стр. 2 из 3)

х–у¹0 Þ х¹у

х+у¹0 Þ х¹–у

х2–у2¹0 Þ х¹у, х¹–у

х2+у2¹0 Þ х¹0, у¹0.

Итак, область определения х¹0, у¹0, х¹у, х¹–у.

Приведем дроби, стоящие в скобках к общему знаменателю и воспользуемся формулами сокращенного умножения

Воспользуемся правилом деления дробей:

Ответ:

при х¹0, у¹0, х¹у, х¹–у.

Пример 4. Упростить выражение

Найдем область определения выражения:

а¹0 Þ

b+с¹0 Þ b¹–с

Þ b+с–а¹0 Þ b+с¹а

а¹0 и b+с¹0

2bс¹0 Þ b¹0, с¹0.

Таким образом, область определения: а¹0, b¹0, с¹0, b¹–с, b+с¹а.

Приведем дроби, стоящие в числителе и знаменателе первой дроби, а также сумму, стоящую в скобках, к общим знаменателям

Воспользуемся правилом деления дробей и приведем четырехэтажную дробь к двухэтажной. В числителе второй дроби выделим полный квадрат суммы b и с

Числитель второй дроби, воспользовавшись формулой разности квадратов, разложим на множители

Ответ:

при а¹0, b¹0, b¹–с, с¹0, b+с¹а.

Пример 5. Упростить выражение

Найдем область определения выражения, для этого потребуем

первые два выражения, как сумма трех неотрицательных слагаемых равны нулю только при х=0 и у=0.

Рассмотрим третье выражение

тогда

когда
. Отсюда имеем х¹0, у¹0.

Т.о. обл. определения х¹0, у¹0.

2) Знаменатель третьей дроби мы заложили на множители, находя область определения выражения. Разложим на множители числитель первой дроби, а в числителе и в знаменателе второй представим

Воспользуемся правилами деления дробей

Ответ:

Пример 6. Упростить выражение

Решение:

Найдем область определения:

b-c ¹ 0 Þ b ¹ c

c-a ¹ 0 Þ c ¹ a

a-b ¹ 0 Þ a ¹ b

2) Приведем дроби к общему знаменателю (b-c)(c-a)(a-b)

3) Воспользуемся формулами сокращенного умножения

Ответ: f(a,b,c) = 0 при b ¹ c, c ¹ a, a ¹ b.

4. Для успешного выполнения тождественных преобразований иррациональных выражений нужно помнить:

1. Определение арифметического корня n-ой степени:

Если

и n – натуральное число большее 1, то существует только одно неотрицательное число x такое, что выполняется равенство
. Это число х называется арифметическим корнем n-ой степени из неотрицательного числа а и обозначается
.

Пример.

Если n – нечетное натуральное число большее 1 и а < 0, то под

понимают такое отрицательное число х, что
.

Пример.

2. Из определения 1. Следует, что если в алгебраическом выражении есть корни четной степени, то подкоренные выражения таких корней должны быть неотрицательными, что учитывается при определении области определения алгебраического выражения.

Пример.

Область определения выражения

3. Определение модуля числа.

Модулем числа а называется само число а, если

и противоположное ему число, если а < 0 т.е.

4. Свойства арифметического корня:

Если n, k, m – натуральные числа,

то:

, если b ¹ 0.

Замечание. Если a < 0, b < 0, то свойства 1° и 2° принимают вид

Замечание. Если показатели корней нечетные числа, то свойства 1°– 6° выполняются для a < 0, b < 0 и ab < 0.

7° Если n – четное число т.е. n = 2k, то

Пример.

т.к.
, то
, тогда по определению модуля
и
.

Пример 1. Упростить выражение:

Решение.

1) Сначала, используя свойства арифметического корня, упростить каждый из имеющихся радикалов:

2)

3) Раскроем скобки и приведем подобные

Ответ:

Пример 2. Упростить выражение

Решение: Выражение упростится, если окажется, что под этим корнем содержится полный квадрат разности или суммы каких-нибудь чисел.

Представим

в виде полного квадрата. Для этого представим

тогда

2)

3) По свойству 7° имеем

Т.к.

, то
, тогда по определению модуля

и

Ответ:

.

Пример 3. Освободиться от иррациональности в знаменателе дроби

.

Решение:

В знаменателе имеем иррациональность 2-ой степени, поэтому домножим и числитель, и знаменатель дроби на сумму чисел

и
, тогда в знаменателе будем иметь разность квадратов, которая и ликвидирует иррациональность.

Ответ:

.

Пример 4. Освободиться от иррациональности в знаменателе дроби