Смекни!
smekni.com

Оператор сдвига (стр. 1 из 8)

Введение

Тема для написания дипломной работы была выбрана не случайно. Теория линейных операторов – это интересная и важная область, которая позволяет не только активно применять уже имеющиеся знания по анализу, но и узнать много нового.

В данной работе рассматриваются линейные операторы одностороннего и двустороннего сдвига. Вводятся основные понятия: спектр, резольвента, спектральный радиус оператора. Рассматриваются задачи, в ходе решения которых выясняются некоторые свойства спектров операторов сдвига. Определяется класс взвешенных сдвигов, выводится соотношение для нормы и спектрального радиуса оператора взвешенного сдвига.

Известно, что если рассматривать поле действительных чисел при условии, что аксиома Архимеда не выполняется, то получим новое, расширенное поле, в котором существуют бесконечно большие и бесконечно малые элементы. На основании этого расширения можно построить весь математический анализ – нестандартный анализ.

Естественно, часть основных понятий и свойств линейных операторов было бы интересно определить и доказать и в нестандартном анализе, что и было сделано в работе.

В частности, был установлен следующий факт: хотя стандартный оператор сдвига не имеет собственных векторов, но его нестандартное расширение имеет «почти собственные» векторы, т. е. векторы, в определенном смысле бесконечно близкие к собственным.

Часть 1. Оператор сдвига в гильбертовом пространстве

§1. Основные понятия и факты теории линейных операторов

1. Определение и примеры линейных операторов

Пусть Е и Е1 – два линейных нормированных пространства над полем комплексных чисел. Линейным оператором, действующим из Е в Е1 называется отображение

(
удовлетворяющее условию

для всех
.

Совокупность DA всех тех

, для которых отображение А определено, называется областью определения оператора А; вообще говоря, не предполагается, что DA=E , однако мы всегда будем считать, что DA есть линейное многообразие, то есть, если х,у
DA , то и
при любых
.

Определение 1. Оператор

называется непрерывным в точке х0
DA , если для любой окрестности V точки у0=Ах0 существует такая окрестность U точки х0 , что Ах
V , как только х
. Оператор А называется непрерывным, если он непрерывен в каждой точке х
DA.

Поскольку Е и Е1 – нормированные пространства, то это определение равносильно следующему: оператор А называется непрерывным, если выполняется следующее условие:

(
.

Примеры линейных операторов

Пусть А – линейный оператор, отображающий n-мерное пространство Rn c базисом е1, …, еn в m-мерное пространство Rm с базисом f1, …,fm . Если х – произвольный вектор из Rn , то

и, в силу линейности оператора А
.

Таким образом, оператор А задан, если известно, в какие элементы он переводит базисные векторы е1,…, еn . Рассмотрим разложение вектора Аеi по базису f1, …, fm . Имеем

. Следовательно, оператор А определяется матрицей коэффициентов аij . Образ пространства Rn и Rm представляет собой линейное пространство, размерность которого равна, очевидно, рангу матрицы
, т.е. во всяком случае не превосходит n (свойство ранга матрицы). Отметим, что в конечномерном пространстве всякий линейный оператор автоматически непрерывен.

Рассмотрим гильбертово пространство Н и в нем некоторое подпространство Н1 . Разложив Н в прямую сумму подпространства Н1 и его ортогонального дополнения, т.е. представив каждый элемент

в виде
(
положим Рh=h1. Этот оператор Р естественно назвать оператором проектирования, проектирующим все пространство Н на Н1. Очевидно, что Р является линейным и непрерывным оператором.

Рассмотрим в пространстве

непрерывных функций на отрезке [a;b] с нормой
оператор, определяемый формулой

, (1)

где k(s,t) – некоторая фиксированная непрерывная функция двух переменных. Функция

непрерывна для любой непрерывной функции
, так что оператор (1) действительно переводит пространство непрерывных функций в себя. Его линейность очевидна. Можно доказать также, что он непрерывен.

Тот же оператор можно рассмотреть на множестве непрерывных функций С2[a,b] с нормой

, где он также непрерывен.

4. Один из важнейших для анализа примеров линейных операторов – оператор дифференцирования. Его можно рассматривать в пространстве C[a,b] : Df(t) =

.
Этот оператор D определен не на всем пространстве непрерывных функций, а лишь на линейном многообразии функций, имеющих непрерывную производную. Оператор D линеен, но не непрерывен. Это видно, например, из того, что последовательность
сходится к 0 ( в метрике С[a,b]), а последовательность
не сходится.

Оператор дифференцирования можно рассматривать как оператор, действующий из пространства D1 непрерывно дифференцируемых функций на [a,b] с нормой

в пространство С[a,b]. В этом случае оператор D линеен и непрерывен и отображает все D1 на все С[a,b].

Рассмотрение оператора дифференцирования как оператора, действующего из D1 в С[a,b], не вполне удобно, так как, хотя при этом мы и получаем непрерывный оператор, определенный на всем пространстве, но не к любой функции из D1 можно применять этот оператор дважды. Удобнее рассматривать оператор дифференцирования в еще более узком пространстве, чем D1 , а именно в пространстве

бесконечно дифференцируемых функций на отрезке [a; b], в котором топология задается счетной системой норм
. Оператор дифференцирования переводит все это пространство в себя, и, как можно проверить, он непрерывен на этом пространстве.

2. Ограниченность и норма линейного оператора

Определение 2. Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определен на всем Е и каждое ограниченное множество переводит снова в ограниченное. Между непрерывностью и ограниченностью линейного оператора существует тесная связь, т.е. справедливы следующие утверждения:

Теорема 1. Для того, чтобы линейный оператор

был непрерывным, необходимо и достаточно, чтобы он был ограничен.

1. Пусть оператор А неограничен. Тогда существует М

Е – ограниченное множество, такое, что множество АМ
Е1 не ограничено. Следовательно, в Е1 найдется такая окрестность нуля V, что ни одно из множеств
АМ не содержится в V. Но тогда существует такая последовательность хn
M , что ни один из элементов
Ахn не принадлежит V и получаем, что
в Е, но
не сходится к 0 в Е; это противоречит непрерывности оператора А.