Смекни!
smekni.com

Эволюция центральных областей галактик (стр. 2 из 4)

Малые слияния

При малых слияниях на большую дисковую галактику падает маленькая галактика – спутник с массой, например, 10% от массы «хозяйской» галактики. Расчеты показывают, что при падении, даже под углом к плоскости основного диска, спутник, после нескольких ударов о него, теряет вертикальную составляющую момента, оседает в плоскость большого диска и начинает «спиралить» к центру. В течение примерно 1 млрд. лет он достигает центра хозяйской галактики, потеряв в пути меньшую часть своего собственного вещества. А что же галактика-спутник приносит в центр? Большую часть своих звезд и газ, если изначально он у него был. Если же изначально у него газа не было, все равно во время движения он сильно возмутил газовый диск хозяйской галактики, усилилась турбулентность, и, следовательно, увеличилась вязкость в глобальном газовом диске. Возрастание вязкости означает интенсивное перераспределение момента вращения и снова стремительные радиальные течения газа к центру. Малые слияния тоже должны приводить к концентрации газа в ядре галактики и к последующей вспышке звездообразования.

Вы уже заметили? Все важные события в жизни галактик кончаются одним и тем же: механизмы секулярной эволюции приводят к концентрации газа в центре галактики и, как следствие, к вероятной вспышке звездообразования там. Причем газ, из-за своей вязкой природы, как правило, представляет собой подсистему с малыми (относительно скорости упорядоченного вращения) хаотическими скоростями облаков и геометрией тонкого диска. Образовавшиеся вновь в центре галактики звезды, скорее всего, также распределятся компактным околоядерным звездным диском. И если мы хотим найти в близких к нам галактиках последствия их секулярной эволюции, разумнее всего поискать в центрах галактик компактные звездные диски, отличающиеся от окружения (балджа, например) более молодым возрастом и большим содержанием металлов, поскольку образовались они позже из хорошо проэволюционировавшего вещества. Там, кроме всего прочего, еще и самое яркое место в галактике, поэтому легче наблюдать. Первые впечатляющие открытия околоядерных звездных дисков были сделаны в эллиптических галактиках, там, где их найти никто не ожидал.

Диски в эллиптических галактиках

Эллиптические галактики, в отличие от спиральных, всегда считались однокомпонентными звездными системами. Все звезды эллиптической галактики вроде бы похожи друг на друга, имеют одинаковый возраст, одинаковую металличность и распределены в трехмерной сфероидальной структуре, которая в проекции на плоскость неба может иметь отношение видимых осей от 1 : 1 до 1 : 3. Вращается большинство эллиптических галактик медленно (по сравнению с дисковыми галактиками), они являются динамически горячими системами, то есть у их звезд хаотические движения («дисперсия скоростей») преобладают над регулярным вращением. Однако, когда с появлением чувствительных ПЗС-приемников точность измерений потоков повысилась до 1% (и лучше!), а динамический диапазон позволил наблюдать самые центральные области галактик, обнаружились любопытные вещи.

Рис. 2 – Линии равной поверхностной яркости (изофоты), построенные для изображения эллиптической галактики NGC 821, полученного КТХ. Видны избытки «носики» на изофотах вблизи их большой оси.

В 1988 г. сделаны два громких открытия: во-первых, в некоторых эллиптических галактиках были обнаружены кинематически выделенные ядра, которые вращались значительно быстрее, чем вся галактика, и часто вокруг совсем по-другому ориентированной в пространстве оси вращения; во-вторых, в подавляющем большинстве эллиптических галактик умеренной светимости были зафиксированы «дискообразные» изофоты. В первом приближении изофоты распределения поверхностной яркости в эллиптических галактиках выглядят как правильные эллипсы. Однако можно заметить малые отклонения изофот от этой формы. Если вдоль большой оси эллипсов с двух сторон торчат наружу «носики», это называется дискообразными изофотами. Такой эффект получится, если внутрь правильного звездного эллипсоида вложить маленький сильно наклоненный к нашему лучу зрения диск. Итак, если у большинства эллиптических галактик умеренной светимости изофоты дискообразные, является ли это доказательством того, что у всех у них в центре есть маленькие звездные диски? Не совсем! Немецкие астрономы Т. Нааб, А. Буркерт и американец Л. Хернквист (1999) построили численную модель большого слияния двух дисковых галактик без газа, в которой получается эллиптическая галактика. Затем получившуюся галактику спроецировали в 50 случайных вариантах пространственной ориентации на картинную плоскость, чтобы сравнить с наблюдениями. Их интересовало, какие изофоты будут у продукта слияния? Оказалось, если массы двух слившихся галактик были изначально неравными, например соотносились как 1 : 3, то в некоторых ориентациях у получившегося в результате звездного сфероида наблюдаются дискообразные изофоты, хотя нет никакого диска! Тогда авторы предположили, что яркие массивные эллиптические галактики образовались слиянием двух дисковых (соотношение масс 1 : 1), а менее массивные эллиптические галактики получились слиянием двух дисковых галактик, из которых одна в 3–4 раза меньше другой. Этим различием начальных условий они объясняли статистически разную форму изофот у ярких и слабых эллиптических галактик. Но уже в следующей работе Т. Нааб и А. Буркерт (2001) признались, что хотя распределение яркости объяснить без дисков можно, но нельзя объяснить наблюдаемую кинематику звезд в эллиптических галактиках. Все дело в тонких различиях формы распределения скоростей звезд на луче нашего зрения. В первом приближении оно похоже на распределение Гаусса: большинство звезд движется в данном месте со средней скоростью вращения, но всегда есть звезды более быстрые и более медленные – из-за наличия хаотической компоненты движения у звезд эллиптических галактик. Так, в модельном продукте слияния двух дисков, который внешне похож на эллиптическую галактику, оказалось чуть больше «быстрых» звезд, а в реальных галактиках по наблюдениям получается чуть больше «медленных» звезд. Причем это справедливо и для гигантских эллиптических галактик, у которых изофоты не дискообразные! В общем, как сказал на одной из конференций в 1999 г. классик исследования эллиптических галактик Д. Бёрстейн: «Внутри абсолютно всех эллиптических галактик есть маленькие диски».

Рис. 3 – Модельные изовелы (линии равных скоростей звезд) компактного звездного диска, погруженного внутрь динамически горячего звездного сфероида. Красный и синий цвет обозначают удаляющуюся и приближающуюся к нам в процессе вращения половинки галактики. Изовелы как бы стягиваются (схлопываются) к большой оси.
Рис. 4 – Поле скоростей звезд в эллиптической галактике NGC 821, показывающее вращение центра галактики, с наложенными на него центральными изофотами. Синяя половина – приближающаяся к нам часть галактики, а красная – удаляющаяся в процессе вращения. Видно, как область быстрого вращения концентрируется к большой оси – это околоядерный звездный диск.

Сейчас, пожалуй, самый лучший и наглядный способ искать внутренние диски в эллиптических галактиках – это двумерная спектроскопия, позволяющая получать двумерные поля скоростей звезд вместо популярных до сих пор спектральных разрезов галактики длинной щелью. На таких полях скоростей внутренние звездные диски видны буквально «глазом». Если внутренний диск достаточно хорошо наклонен к лучу зрения, то в модельной картине его быстрое вращение мы увидим вблизи большой оси изофот, а чуть дальше от большой оси вращение будет замедлено – динамически горячие сфероиды всегда вращаются медленнее, чем диски в том же гравитационом потенциале. Линии равных скоростей – изовелы – как бы «схлопываются» вблизи большой оси. Покажем на примере эллиптической галактики NGC 821, как они выглядят. Изофоты изображения, полученного на космическом телескопе им. Хаббла (КТХ), имеют явно дискообразную форму. Поле скоростей звезд, полученное на спектрографе интегрального поля САУРОН (Spectrographic Areal Unit for Research on Optical Nebulae – Спектральный панорамный прибор для исследования оптических туманностей) на 4-м телескопе Вильяма Гершеля на Канарских островах, демонстрирует компактный диск, видимый практически с ребра. Вблизи поля скоростей, соответствующие приближающейся к нам и удаляющейся от нас половинкам галактики. Дискообразные изофоты, и быстрое вращение можно заметить, только если внутренний диск сильно наклонен к нашему лучу зрения. В выборке из 48 близких галактик ранних типов, двумерные поля которых недавно опубликовала «Команда САУРОН», внутренние диски видны по кинематике (картам движения) более чем в половине всех объектов. Похоже, Д. Бёрстейн прав, и внутренние диски есть во всех эллиптических галактиках.

Химически выделенные ядра галактик

Если в центрах галактик ранних типов с большими балджами (S0 или Sa-Sb) есть компактные звездные структуры, возникшие во вторичной вспышке звездообразования, они должны быть видны не только по форме изофот или изовел. Активное звездообразование – это быстрая химическая эволюция, потому что химические элементы тяжелее азота рождают в основном массивные звезды, которые живут недолго и успевают отдать в межзвездную среду вновь произведенные тяжелые элементы еще до окончания вспышки звездообразования. Поэтому компактные околоядерные диски – продукты вторичных вспышек звездообразования – должны выделяться на фоне окружающих их старых звездных сфероидов более молодым возрастом звезд и повышенным содержанием в них металлов. Двумерная спектроскопия обеспечивает нас полной информацией от протяженного участка галактики, и следовательно, мы можем построить двумерные карты эквивалентной ширины (на самом деле, глубины) линий поглощения в спектре. Линии поглощения в интегральном спектре галактики порождаются более всего звездами, причем известно, какие линии какими именно звездами. Так, за линии поглощения водорода ответственны в основном звезды класса A – довольно массивные, порядка 2М¤, и возраст их не может быть больше 1–2 млрд. лет. Поэтому, грубо говоря, чем глубже линии водорода в интегральном спектре, тем больше относительно молодых звезд в галактике или в галактической структуре, спектр которой мы наблюдаем. Линии поглощения металлов (например, сильный триплет магния на длине волны 5175 ? или многочисленные линии железа) тем глубже, чем больше металличность звезд. Правда, есть один нюанс: в молодых массивных звездах линии металлов всегда слабые (эквивалентная ширина их мала), даже если металличность этих звезд велика. Здесь выручает совместный анализ линий металлов и линий водорода: если их сопоставить, то эффекты возраста и металличности можно разделить и определить одновременно оба параметра.