Смекни!
smekni.com

Основы теории систем и системный анализ (стр. 18 из 21)

Сразу же сообразим, что чем больше n и чем меньше таких число факторов m (а может их и нет вообще!), тем больше надежда оценить их влияние на интересующий нас показатель E.

Столь же легко понять необходимость условия m < k, объяснимого на простом примере аналогии — если мы исследуем некоторые предметы с использованием всех 5 человеческих чувств, то наивно надеяться на обнаружение более пяти “новых”, легко объяснимых, но неизмеряемых признаков у таких предметов, даже если мы “испытаем” очень большое их количество.

Вернемся к исходной матрице наблюдений E[n·k] и отметим, что перед нами, по сути дела, совокупности по n наблюдений над каждой из k случайными величинами E1, E2, … E k. Именно эти величины “подозреваются” в связях друг с другом — или во взаимной коррелированности.

Из рассмотренного ранее метода оценок таких связей следует, что мерой разброса случайной величины E i служит ее дисперсия, определяемая суммой квадратов всех зарегистрированных значений этой величины S(Eij)2 и ее средним значением (суммирование ведется по столбцу).

Если мы применим замену переменных в исходной матрице наблюдений, т.е. вместо Ei j будем использовать случайные величины

Xij =

, {3-27}

то мы преобразуем исходную матрицу в новую

X[n·k] {3-28}

X 11

X12

X1i

X1k

X 21

X22

X2i

X2k

X j1

Xj2

Xji

Xjk

X n1

Xn2

Xni

Xnk

Отметим, что все элементы новой матрицы X[n·k] окажутся безразмерными, нормированными величинами и, если некоторое значение Xij составит, к примеру, +2, то это будет означать только одно - в строке j наблюдается отклонение от среднего по столбцу i на два среднеквадратичных отклонения (в большую сторону).

Выполним теперь следующие операции.

· Просуммируем квадраты всех значений столбца 1 и разделим результат на (n - 1) — мы получим дисперсию (меру разброса) случайной величины X1 , т.е. D1. Повторяя эту операцию, мы найдем таким же образом дисперсии всех наблюдаемых (но уже нормированных) величин.

· Просуммируем произведения соответствующих строк (от j =1 до j = n) для столбцов 1,2 и также разделим на (n -1). То, что мы теперь получим, называется ковариацией C12 случайных величин X1 , X2 и служит мерой их статистической связи.

· Если мы повторим предыдущую процедуру для всех пар столбцов, то в результате получим еще одну, квадратную матрицу C[k·k], которую принято называть ковариационной.

Эта матрица имеет на главной диагонали дисперсии случайных величин Xi, а в качестве остальных элементов — ковариации этих величин ( i =1…k).

Ковариационная матрица C[k·k] {3-29}

D1

C12

C13

C1k

C21

D2

C23

C2k

Cj1

Cj2

Cji

Cjk

Cn1

Cn2

Cni

Dk

Если вспомнить, что связи случайных величин можно описывать не только ковариациями, но и коэффициентами корреляции, то в соответствие матрице {3-29} можно поставить матрицу парных коэффициентов корреляции или корреляционную матрицу

R [k·k] {3-30}

1 R12 R13 R1k
R21 1 R23 R2k
Rj1 Rj2 Rji Rjk
Rn1 Rn2 Rni 1

в которой на диагонали находятся 1, а внедиагональные элементы являются обычными коэффициентами парной корреляции.

Так вот, пусть мы полагали наблюдаемые переменные Ei независящими друг от друга, т.е. ожидали увидеть матрицу R[k·k] диагональной, с единицами в главной диагонали и нулями в остальных местах. Если теперь это не так, то наши догадки о наличии латентных факторов в какой-то мере получили подтверждение.

Но как убедиться в своей правоте, оценить достоверность нашей гипотезы — о наличии хотя бы одного латентного фактора, как оценить степень его влияния на основные (наблюдаемые) переменные? А если, тем более, таких факторов несколько — то как их проранжировать по степени влияния?

Ответы на такие практические вопросы призван давать факторный анализ. В его основе лежит все тот же “вездесущий” метод статистического моделирования (по образному выражению В.В.Налимова — модель вместо теории).

Дальнейший ход анализа при выяснению таких вопросов зависит от того, какой из матриц мы будем пользоваться. Если матрицей ковариаций C[k·k], то мы имеем дело с методом главных компонент, если же мы пользуемся только матрицей R[k·k], то мы используем метод факторного анализа в его “чистом” виде.

Остается разобраться в главном — что позволяют оба эти метода, в чем их различие и как ими пользоваться. Назначение обоих методов одно и то же — установить сам факт наличия латентных переменных (факторов), и если они обнаружены, то получить количественное описание их влияния на основные переменные Ei.

Ход рассуждений при выполнении поиска главных компонент заключается в следующем. Мы предполагаем наличие некоррели-рованных переменных Zj ( j=1…k), каждая из которых представляется нам комбинацией основных переменных (суммирование по i =1…k):

Zj = S Aj i ·X i {3-31}

и, кроме того, обладает дисперсией, такой что

D(Z1) ³ D(Z2) ³³ D(Zk).

Поиск коэффициентов Aj i (их называют весом j-й компонеты в содержании i-й переменной) сводится к решению матричных уравнений и не представляет особой сложности при использовании компьютерных программ. Но суть метода весьма интересна и на ней стоит задержаться.

Как известно из векторной алгебры, диагональная матрица [2·2] может рассматриваться как описание 2-х точек (точнее — вектора) в двумерном пространстве, а такая же матрица размером [k·k]как описание k точек k-мерного пространства.

Так вот, замена реальных, хотя и нормированных переменных Xi на точно такое же количество переменных Z j означает не что иное, как поворот k осей многомерного пространства.

“Перебирая” поочередно оси, мы находим вначале ту из них, где дисперсия вдоль оси наибольшая. Затем делаем пересчет дисперсий для оставшихся k-1 осей и снова находим “ось-чемпион” по дисперсии и т.д.