Смекни!
smekni.com

Дифференциальные уравнения I и II порядка (стр. 7 из 8)

.

Так как общее решение исходного дифференциального уравнения записывается в виде U(x,y)=c=const, то, заменяя две постоянных на одну, получаем следующий вид общего решения уравнения

или

.

Пример 1. Дано дифференциальное уравнение

(6x2y2+6xy-1)dx+(4x3y+3x2y+2y)dy=0.

В нем M(x,y)=6x2y2+6xy-1, N(x,y)=4x3y+3x2y+2y. Из

и тождества
,

Следует, что данное уравнение является уравнением в полных дифференциалах. Проведем его решение в два этапа.

На первом решаем уравнение

или dU=(6x2y2+6xy-1)dx,

в котором переменная y считается закрепленной. Интегрируя это уравнение, получаем

U(x,y)=2x3y2+3x2y-x+h(y).

На втором этапе определяем вид функции h(y), используя для этого соотношение

и дифференциальное уравнение для h и y

4x3y+3x2+h/(y)=4x3y+3x2+2y или

.

Интегрируя последнее, получаем h=y2+c. Общий интеграл исходного уравнения тогда можно записать в виде

2x3y2+3x2y-x+y2=c.

Пример 2. Найти решение уравнения

2xsinydx+(3y2+x2cosy)dy=0.

Проверяем, является ли оно уравнением в полных дифференциалах? Для этого из M(x,y)=2xsiny, N(x,y)=3y2+x2cosy

Находим

.

Так как, очевидно, выполняется условие

,

то уравнение есть уравнение в полных дифференциалах.

Сначала решаем уравнение

или dU=2xsinydx,

считая y постоянной. Интегрирование уравнения дает

U(x,y)=x2siny+h(y).

Затем находим функцию h(y), используя соотношения

, с одной стороны, и
, с другой стороны. Соотношения приводят к дифференциальному уравнению

или
.

Интегрируя последнее уравнение, получаем h=y3+c.

Тогда общий интеграл исходного дифференциального уравнения записывается в виде

X2siny+y3+c=0.

Далее рассмотрим понятие интегрирующего множителя. Ранее отмечалось, что уравнение в полных дифференциалах возникает, когда поведение системы сохраняет некоторую величину U, т.е. удовлетворяет соотношению

U(x,y)=c.

Дифференциальным аналогом его является уравнение dU(x,y)=0 или

M(x,y)dx+N(x,y)dy=0,

Где

.

Предположим теперь, что частные производные функции U(x,y) представимы в виде

.

Тогда соотношению U(x,y)=e будет соответствовать уравнение в полных дифференциалах вида

M(x,y)g(x,y)dx+N(x,y)g(x,y)dy=0.

Если теперь данное уравнение разделить на общий множитель слагаемых g(x,y), то получим уравнение M(x,y)dx+N(x,y)dy=0.

Решение последнего уравнения эквивалентно решению предыдущего, из которого оно получено, однако оно может уже не являться уравнением в полных дифференциалах, также для него возможно будет

.

В то же время после умножения его на множитель g(x,y), оно становится уравнением в полных дифференциалах.

Определение. Функция g(x,y) называется интегрирующим множителем дифференциального уравнения

M(x,y)dx+N(x,y)dy=0,

Если после умножения его на эту функцию оно становится уравнением в полных дифференциалах.

Данный способ решения дифференциального уравнения называется методом интегрирующего множителя.

Найдем условие, которому должен подчиняться интегрирующий множитель g(x,y). Из предложения, что уравнение

M(x,y)g(x,y)dx+N(x,y)g(x,y)dy=0

Становится уравнением в полных дифференциалах следует выполнение условия

.

Разверернув левую и правую части этого тождества

,

заключаем, что функция g(x,y) должна являться решением уравнения

.

В общем случае решение данного уравнения вызывает затруднения. Отметим два случая, когда его решение становится проще.

Случай первый. Пусть

.

Тогда интегрирующий множитель можно искать в виде функции зависящей только от x.

Действительно, пусть g=g(x). Тогда в виду

; получаем, что искомая функция g(x) является решением дифференциального уравнения

или
,

интегрируя которое, находим

, т.е.
.

Второй слуяай относится к аналогичной ситуации, когда

.

Тогда интегрирующий множитель ищется в виде функции только от y, т.е. g=g(y).

Аналогично предыдущему, не трудно видеть, что функция g(y) является решением уравнения

и представляется в виде

.

Пример 3. Дано уравнение

(y2-3xy-2x2)dx+(xy-x2)dy=0.

Из M(x,y)=y2-3xy-2x2, N(x,y)=xy-x2,

,
следует
, т.е. уравнение не является в полных дифференциалах.

Однако из соотношения

вытекает, что можно найти такой интегрирующий множитель g=g(x), после умножения на который исходное уравнение становится уравнением в полных дифференциалах.

Указанный множитель находим из уравнения

,

интегрируя которое получаем

, или g=xc. Так как в качестве множителя достаточно взять одну из функций, то положим c=1 и, тогда,g=x.

Умножая исходное уравнение на множитель g=x, получаем

(xy2-3x2y-2x3)dx+(x2y-x3)dy=0,

являющееся уже уравнением в полных дифференциалах. Интегрируя его, находим

,

,

затем из U/y=x2y-x3+h/(x) и U/y=N(x,y)=x2y-x3

получаем x2y-x3+h/=x2y-x3, т.е.

и,

следовательно,h=c=const. Таким образом, общее решение имеет вид

.

Пример 4. Требуется решить уравнение

(2xy2-y)dx+(y2+x+y)dy=0.

Из M(x,y)=2xy2-y, N(x,y)=y2+x+y,

следует

.

Однако из соотношения

,

вытекает, что для исходного дифференциального уравнения существует интегрирующий множитель g=g(y), с помощью которого уравнение становится уравнением в полных дифференциалах.

Интегрирующий множитель находится из уравнения

.

Интегрируя его, получаем

.

Умножая исходное уравнение на множитель

, приходим к уравнению

.

Это уравнение является уже уравнением в полных дифференциалах. Решаем его

,

,

затем из

и
,