Смекни!
smekni.com

Комплексные числа (стр. 2 из 2)

Произведение комплексных чисел z1= a + bi и z2 = c + di называется комплексное число z = (ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i. Легко проверить, что умножение комплексных чиcел можно выполнять как умножение многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу: (a + bi)(a - bi) = a2 + b2

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:(a + bi):(c + di) =

=

=
+
i.

Степень числа i является периодической функцией показателя

спериодом 4. Действительно, i2 = -1, i3 = -i, i4 = 1, i4n = (i4)n = 1n = 1, i4n+1 = i, i4n+2 = -1, i4n+3 = -i.

Решение уравнений с комплексным переменным

Рассмотрим сначала простейшее квадратное уравнение z2 = a, где а - заданное число, z - неизвестное. На множестве действительных чисел это уравнение:

1) имеет один корень z = 0, если а = 0;

2) имеет два действительных корня z1,2 =

, если а>0;

3) не имеет действительных корней, если а<0.

На множестве комплексных чисел это уравнение всегда имеет корень .

Задача 1. Найти комплексные корни уравнения z2 = a, если:

1)а = -1; 2)а = -25; 3)а = -3.

1)z2 = -1. Так как i2 = -1, то это уравнение можно записать в виде z2 = i2, или z2 - i2 = 0. Отсюда, раскладывая левую часть на множители, получаем (z-i)(z+i) = 0, z1 = i, z2 = -i.Ответ. z1,2 =

i.

2) z2 = -25. Учитывая, что i2 = -1,преобразуем это уравнение: z2 = (-1)25,

z2 = i2 52, z2 - 52 = 0, (z-5i)(z+5i) = 0, откуда z1 = 5i, z2 = -5i.Ответ.z 1,2 =

5i.

3) z2 = -3, z2 = i2(

)2, z2 - (
)2i2 = 0, (z -
i)(z +
i) = 0, z1 =
i, z 2 = -
i. Ответ. z1,2 =
i.

Вообще уравнение z2 = a, где а < 0 имеет два комплексных корня: Z1,2=

i.

Используя равенство i2 = -1, квадратные корни из отрицательных чисел принято записывать так:

= i,
= i
= 2i,
= i
. Итак,
определен для любого действительного числа а (положительного, отрицательного и нуля). Поэтому любое квадратное уравнение az2 + bz + c = 0, где а,b,с- действительные числа, а
0, имеет корни. Эти корни находятся по известной формуле:

Z1,2 =

.

Задача 2. Решить уравнение z2-4z+13=0. По формуле находим: z1,2 =

=
=
=
=2
3i.

Заметим, что найденные в этой задаче корни являются сопряженными: z1=2+3i и z2=2-3i. Найдем сумму и произведение этих корней: z1+z2=(2+3i)+(2-3i)=4, z1z2=(2+3i)(2-3i)=13.

Число 4- это 2-й коэффициент уравнения z2-4z+13=0, взятый с противоположным знаком, а число 13- свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если z1 и z2 - корни уравнения az2+bz+c = 0, z1+z2 = -

, z1z2 =
.

Задача 3. Составить приведенное квадратное уравнение с действительными коэффициентами, имеющие корень z1=-1-2i.

Второй корень z2 уравнения является числом, сопряженным с данным корнем z1, то есть z2=-1+2i. По теореме Виета находим

P=-(z1+z2)=2, q=z1z2=5. Ответ z2-2z+5=0.

Заключение

В настоящем реферате дано понятие комплексных чисел, история их возникновения. Рассмотрены примеры действий с комплексными числами. Приведены примеры решения уравнений с комплексным переменным, что позволяет решить любые квадратные уравнения, даже с отрицательным дискриминантом.

В реферате также рассмотрена геометрическая интерпретация комплексных чисел в виде векторов.

Список литературы

1. Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров, Н. Е. Федорова, М. И. Шабунин. Учебник для 8 класса по алгебре.- М.: Просвещение, 1994.-С.134-139.

2. И. С. Петраков. Математические кружки в 8-10 классах.- М.: Просвещение, 1987.- С.50-52.

3. А. П. Савин. Энциклопедический словарь юного математика.-М.: Педагогика, 1989.- С. 143-147.