Смекни!
smekni.com

Предмет физики (стр. 3 из 5)

при описании атомных явлений недопустимо: уж слишком они противо-

речивы. Но, вместе с тем, необходимо осмыслить в понятиях физики

те эксперементы, которые неопровержимо свидетельствуют о волновых

и корпускулярных свойствах движущихся атомных объектов. Других

понятий, описывающих атомные эксперементы, кроме понятий класси-

ческой механики, нет. Чтобы применять без противоречий понятия

классической механики, необходимо признать существующим принципи-

ально неконтролируемое взаимодействие, между атомным объектом и

прибором, которое ведет к тому, что в атомной области использова-

ние одного классического понятия ( например, импульса ) исключает

другое ( координату ). С этой точки зрения понятие атома или его

импульса существуют реально только при наблюдении атома прибором

соответствующего класса. Развитие этих идей приводит к утвержде-

нию: если при описании поведения электронов пользоваться прост-

ранственно-временными понятиями, то обязателен отказ от причин-

ности; если же пользоваться понятиями причинности, то столь же

обязательно представлять электроны вне пространства и времени. Т.

о., пространственно-временное описание и принципы причинности

исключают друг друга и в этом смысле являются "дополнительными".

Руководствуясь концепцией дополнительности, Бор и Гейзенберг выс-

казались за пересмотр в квантовой механике вопроса об объективной

реальности, причинности и необходимости.

Вся суть в том, что "копенгагенская интерпретация" пытается

решить неправильно ею же поставленную задачу: проследить за пове-

дением атомного объекта, принципиально не выходя за рамки понятий

классической механики. Когда же выясняется, что эта задача невы-

полнима, отрицательный результат такой попытки рассматривается не

как необходимое следствие существования волновых свойств атомных

объектов, а приписываются наличию некоторого "неконтролируемого

взаимодействия" между объектом и прибором, т. е. наличию дополни-

тельности. Но принципиальной неконтролируемости не существует -

это доказали труды современных ученых-физиков. Теория принципи-

альной неконтролируемости и дополнительности есть лишь фантасти-

ческое отражение нераздельных корпускулярно-волновых свойств мик-

рообъекта.

Проблема причинности.

Бор и Гейзенберг неправильно увидели в философском свете

свои собственные достижения в науке. Это отразилось у них и на

разборе проблемы причинности, которая в современных дискуссиях по

квантовой механике занимает важнейшее место

"Копенгагенская интерпритация" именно потому, что она не

признает объективной реальности, существующей независимо от наб-

людения, приходит к заключению, что причинность - "неплодотворная

и бессмысленная спекуляция", устарелое понятие, на смену которому

пришло, мол, понятие дополнительности, что квантовая механика ин-

детерминистична и т. д.

На самом деле квантовая механика чужда индетерминистическим

концепциям. Всем своим научным содержанием она подтверждает науч-

ный материализм нашей эпохи.

Вместе с тем научный материализм указал квантовой механике

выход из тупика индетерминизма на безграничные просторы познания

закономерностей микроявлений.

Детерминизм, т.е. признание того, что все явления природы,

необходимо закономерно, причинно связаны друг с другом, лежит в

основе науки. Существующая в мире случайность представляет собой

форму проявления необходимости и может быть правильно понята

только в связи с необходимостью и на ее основе. Одну из форм все-

общей взаимозависимости явлений материального мира составляет

причинность. История науки, в том числе физики и механики, как и

вся общественная практика человека, приводит к выводу, что наши

знание закономерных, необходимых, причинных связей явлений приро-

ды становится с развитием науки и практики все более глубоким и

полным, преодолевая относительную ограниченность, свойственную

науке на отдельных ее ступенях.

Квантовая механика дает великолепный материал для подтверж-

дения этих положений. Открытие Гейзенбергом соотношения неопреде-

ленностей и Шредингером волнового уравнения, имеющего в квантовой

механике такое же значение, как законы Ньютона в классической ме-

ханике, открытие своеобразных статистических законов атомных яв-

лений, о которых старая физика и не догадывалась, знаменовали со-

бой прогресс в познании объективных закономерностей природы,

дальнейшее углубление нашего знания объективных причинных связей.

Объективные закономерные, причинные связи явлений не сводятся к

тем причинным связям, которые выразила в своих уравнениях класси-

ческая механика; они бесконечно многообразнее и "удивительнее",

чем это допускал механический материализм.

Для правильного ответа на филосовский вопрос о причинности,

поставленный квантовой механикой, важно учесть следующее положе-

ние Ленина: "Казуальность, обычно нами понимаемая, есть лишь ма-

лая частичка всемирной связи6 но ... частичка не субъективной, а

объективной реальной связи". ( 5,с. 136 )

Философские размышления о пространстве и времени.

Достижения физики XIX-XX вв. значительно повлияли на конк-

ретные представления о смысле таких философских категорий, как

пространство и время.

Современные физические представления о пространстве и време-

ни разработаны теорией относительности; по сравнению с классичес-

кой физикой - это новая ступень в познании физикой объективно-ре-

альных пространств и времени. Теория относительности, созданная

великим физиком нашей эпохи А. Эйнштейном, связала в высшем

единстве классическую механику и электродинамику, и пересмотрела

основные понятия и положения классической механики, относящиеся к

длине и длительности, к массе, энергии, импульсу и т. д., подчи-

нив их новым физическим понятиям и положениям, полнее и глубже

отражающим движущуюся материю.

Для классической физики пространство и время были некими са-

мостоятельными сущностями, причем пространство рассматривалось

как простое вместилище тел, а время - как только длительность

процессов; пространственно-временные понятия выступали как не

связанные друг с другом. Теория относительности показала односто-

ронность такого взгляда на пространство и время. Пространство и

время органически связаны, и эта связь отражается в теории отно-

сительности, в математическом аппарате которой фигурируют так на-

зываемые четырехмерные пространственно-временные векторы и тензо-

ры.Эта теория привела к выводам о зависимости ритма часов от сос-

тояния их движения, зависимости массы от скорости, о взаимозави-

симости между массой и энергией; все эти выводы широко подтверж-

дены опытом.

В чем же состоят основные выводы теории относительности по

данному вопросу? Специальная теория относительности, построения

которой было завершено А. Эйнштейном в 1905 году, доказала, что в

реальном физическом мире пространственные и временные интервалы

меняются при переходе от одной системы отчета к другой. Старая

физика считала, что если системы отсчета движутся равномерно и

прямолинейно относительно друг друга (такое движение называется

инерциальным), то пространственные интервалы ( расстояние между

двумя ближними точками ), и временные интервалы ( длительность

между двумя событиями ) не меняются.

Теория относительности эти представления опровергла, вернее,

показала их ограниченную применимость. Оказалось, что только тог-

да, когда скорости движения малы по отношению к скорости света,

можно приблизительно считать, что размеры тел и ход времени оста-

ются одними и теми же, но когда речь идет о движениях со скорос-

тями, близкими к скорости света, то изменение пространственных и

временных интервалов становится заметным. При увеличении относи-

тельной скорости движения системы отсчета пространственные интер-

валы сокращаются, а временные растягиваются.

До создания теории относительности считалось, что объектив-

ность пространственно-временного описания гарантируется только

тогда, когда при переходе от одной системы отсчета к другой сох-

раняются отдельно пространственные и отдельно временные интерва-

лы. Теория относительности обобщила это положение. В зависимости

от характера движения систем отсчета драг относительно друга про-

исходят различные расщепления единого пространства-времени на от-

дельно пространственный и отдельно временной интервалы, но проис-

ходят таким образом, что изменение одного как бы компенсирует из-

менение другого. Получается, что расщепление на пространство и

время, которое происходит по-разному при различных скоростях дви-

жения, осуществляется так, что пространственно-временной интер-

вал, т.е. совместное пространство-время ( расстояние между двумя

близлежащими точками пространства и времени ), всегда сохраняет-

ся, или, выражаясь научным языком, остается инвариантом. Тем са-

мым специальная теория относительности раскрыла внутреннюю связь

между собой пространства и времени как форм бытия материи. С дру-

гой стороны, поскольку само изменение пространственных и времен-

ных интервалов зависит от характера движения, то выяснилось,

пространство и время определяются состояниями движущейся материи.

Они таковы, какова движущаяся материя.

Идей специальной теории относительности получила дальнейшее

развитие и конкретизацию в общей теории относительности, которая

была создана Эйнштейном в 1916 г. В этой теории было показано,