Смекни!
smekni.com

Разностные аппроксимации (стр. 5 из 5)

При исследовании устойчивости разностных схем с переменными коэффициентами иногда применяется принцип замороженных коэффициентов, сводящий задачу к уравнению с постоянными коэффициентами. Рассмотрим явную схему, соответствующую уравнению (24) с s = 0 и f(xi, t) º 0, т.е. схему


(25)

Предположим, что коэффициенты r(xi, t), a(xi, t) – постоянные, r(xi, t) ºr = const, a(xi, t) º a = const. Тогда уравнение (25) можно записать в виде


или

Из п.2 известно, что последнее уравнение устойчиво при t£ 0,5h2, т.е. при


(26)

Принцип замороженных коэффициентов утверждает, что схема (25) устойчива, если условие (26) выполнено при всех допустимых значениях a(xi, t), r(xi, t), т.е. если при всех x, t выполнены неравенства


(27)

Если известно, что 0 < c1£ a(xi, t) £ c2, r(xi, t) ³ c3 > 0, то неравенство (27) будет выполнено при


Строгое обоснование устойчивости схемы (25) будет дано в примере 2 из главы 2.

Если параметр s³ 0,5, то из принципа замороженных коэффициентов следует абсолютная устойчивость схемы (24).

Рассмотрим теперь первую краевую задачу для нелинейного уравнения теплопроводности


(28)

В случае нелинейных уравнений, когда заранее неизвестны пределы изменения функции k(u), избегают пользоваться явными схемами. Чисто неявная схема, линейная относительно yin+2, i = 1, 2,…, N – 1, имеет вид


(29)

где ai = 0,5 (k(yni) + k(yni-1)). Эта схема абсолютно устойчива, имеет первый порядок аппроксимации по t и второй – по h. Решение yin+1, i = 1, 2,…, N – 1, находится методом прогонки. Заметим, что схему (29) можно записать в виде


где ki = k(yin).

Часто используется нелинейная схема


(30)

Для реализации этой схемы необходимо применить тот или иной итерационный метод. Например такой:


(31)

Здесь s – номер итерации. Как видим, нелинейные коэффициенты берутся с предыдущей итерации, а в качестве начального приближения для yin+1 выбирается yin. Это начальное приближение тем лучше, чем меньше шаг t. Число итераций M задается из соображений точности. В задачах с гладкими коэффициентами при k(u) ³ c1 > 0 часто бывает достаточно провести две – три итерации. Значения yi(S+1) на новой итерации находятся из системы (31) методом прогонки. При M = 1 итерационный метод (31) совпадает с разностной схемой (29).

Для приближенного решения нелинейного уравнения (28) применяются также схемы предиктор – корректор второго порядка точности, аналогичные методу Рунге – Кутта для обыкновенных дифференциальных уравнений. Здесь переход со слоя n на слой n+1 осуществляется в два этапа. Приведем пример такой схемы. На первом этапе решается неявная линейная система уравнений


из которой находятся промежуточные значения yin+1/2, i = 0, 1,…, N. Затем на втором этапе используется симметричная шеститочечная схема для уравнения (28), в которой нелинейные коэффициенты a(y), f(y) вычисляются при y = yin+1/2, т.е. схема