Смекни!
smekni.com

Физическое состояние вещества геосфер (стр. 2 из 3)

дин×см-2, (II.9)

где r – радиус. Таким образом, жесткость m растет с глубиной пропорционально квадрату радиуса. Однако эта оценка грубая, так как не учитывает скачков плотности на границах оболочек и не характеризует особые условия на границе внешнего ядра.

Чандлеровский период обусловлен изменением главного момента инерции Земли и для абсолютно жесткой сферы определяется из выражения (Мельхиор, 1976):

, (II.10)

где А и С – моменты инерции относительно экваториальной и полярной осей; ts – продолжительность звездных суток. Причиной колебания момента инерции Земли являются приливы, меняющие скорость ее вращения. По сравнению с позиционной астрономией, дающей дискретные значения вариации широты как функции угла между отвесной линией и небесным экватором, измеряемого зенит-телескопом, наблюдения над приливами дают более детальные сведения вплоть до суточных колебаний. Однако выбор модели распределения m, которая удовлетворительно согласовалась бы с наблюдениями земных приливов и периодами колебания полюсов, представляет непростую задачу. Расчеты, выполненные М. Молоденским и Н. Такеучи, показывают, что возможен довольно большой интервал m, меняющийся в пределах от 0 до 109 дин×см-2, согласующийся с наблюдениями. П. Мельхиор (1968) полагает, что пока не будут преодолены аппаратурные трудности и не решены проблемы исключения из наблюдений эффектов, не относящихся к приливным нутациям, мы не сможем выбрать реальную модель распределения m. На рис. 11 приведены расчетные данные поведения m, взятые из работы Б. Гутенберга (1963). Предполагаются наиболее вероятными распределения 2 и 3, так как они лучше согласуются с сейсмологическими данными о непрохождении поперечных волн через внешнее ядро и ослабление здесь продольных волн (Гутенберг, 1963; Смит, 1975). Таким образом, непрохождение S-волн через внешнее ядро, свидетельствующее об абсолютной или близкой к этому несжимаемости находящегося здесь вещества, возможно, имеет другую природу, так как данные по приливам указывают на вероятность нулевого m, хотя и значительно меньшего по сравнению с оболочкой. Аналогичный вывод получил Л.Н. Рыкунов в 1959 г. по результатам модельных исследований дифракции ультразвуковых волн. Величина m оказалась равной 107 дин×см-2.

Особый интерес представляет оценка вязкости Земли как в целом для сферы, так и по отдельным оболочкам. Однако получить этот параметр из наблюдений над приливными деформациями твердой Земли и чандлеровских колебаний полюсов не удается (Мельхиор, 1976). Это значит, что период релаксации возникающих при этом в теле Земли напряжений деформации больше преобладающих периодов указанных колебаний (наибольший период лунных приливов составляет 18,61 года, качаний полюса – 1,2 года). Вместе с тем имеется немало признаков, свидетельствующих о том, что вещество недр Земли обладает определенной вязкостью. Сюда относятся экваториальное вздутие, периодическое и вековое колебательное движение полюса, вековое замедление вращения Земли, затухание ее собственных колебаний, изостазия и др. Поскольку величина

(II.11)

характеризует период релаксации напряжений, то отсюда ясно, что наблюдаемые приливные и чандлеровские ряды Т меньше t для всей Земли. Следовательно, имея твердость стали, земной шар массой 5,974×1027 г реагирует на возмущающие силы отнюдь не как абсолютно твердый стальной шарик небольшой массы, а как упруговязкое тело. Поэтому для определения t и, следовательно, h необходимо было найти на Земле процессы с заведомо большой длительностью. Таковым оказалось гляциоизостатическое поднятие Фенноскандии и Канадского докембрийского щита. Обе эти структуры характеризуются отрицательными гравитационными аномалиями (-25 и -35 мгл), соизмеримыми с площадью поднятия (Гутенберг, 1963).

Начиная с 6800 г. до н.э. величина поднятия составила 270 м и с учетом отрицательной гравитационной аномалии в 25 мгл следует ожидать дополнительного поднятия Фенноскандии еще на 200 м. Таким образом, для максимальной скорости поднятия в центре области, равной 1 м/100 лет, было получено h = 9×1022 пуаз (дин×см-2×с) – для земной коры и h = 9×1021 пуаз – для верхней мантии.

В существовании постгляциальных поднятий канадского и скандинавского щитов можно было бы сомневаться, так как точность измерений, производимых относительно среднего уровня моря, низка (Гутенберг, 1963). Последнее обусловлено неясностью различных реперов, сохранившихся на побережье Балтийского моря и Великих озер Северной Америки и принимаемых за уровни отсчета, методическими трудностями самих измерений, обусловленных, в частности, нерегулярными колебаниями среднего уровня моря, зависящими от метеоусловий, ветров, количества выпадаемых осадков, а также приливными прогибаниями твердой литосферы с различными периодами и неизвестными амплитудами, глобальными наклонами блоков земной коры, вызванными тектоническими причинами и т.д. Однако начатые еще в 20-х годах А. Вегенером измерения толщины льда в Гренландии, а затем международные исследования в Антарктиде (Атлас Антарктики, 1969) выявили существенное прогибание кристаллической поверхности материка от периферии к центру по мере роста толщины ледяного панциря от 0 – 200 до 1200 – 3000 м. Факт образования под тяжестью льда такого прогиба в твердой кристаллической литосфере, а вместе с ним и значительных отрицательных аномалий силы тяжести служит сильной поддержкой вязкого постгляционального поднятия разгруженной коры в Канаде и Фенноскандии.

Г. Джеффрис (1922) произвел оценку вязкости внешнего ядра по степени ослабления продольных сейсмических волн, прошедших через него. Верхний предел h оказался равен 109 пуаз, т.е. существенно меньше, чем в коре и мантии. Это согласуется с рассмотренными выше данными об уменьшении жесткости m и, как показал Ф. Берч (1952), если вязкость h превысит 1010 пуаз, то ядро станет обладать невязкими свойствами, характерными для твердых тел. А это уже будет противоречить данным сейсмологии и материалам по изучению собственных колебаний Земли. Нижний предел вязкости для Земли в целом по оценкам ее собственных колебаний составляет 1018 пуаз. Учитывая значительное увеличение скорости распространения упругих волн и плотности в нижней мантии, значительно превышающее аналогичные параметры в земной коре, следует предположить, что и вязкость нижней мантии будет существенно больше 1022 пуаз, т.е. вязкости литосферы.

Приведенные оценки h, хотя и довольно схематичны, позволяют установить порядок времени релаксации t в различных оболочках Земли.

Таким образом, на основе (II.11) в среднем для земной сферы имеем:

c; (II.12)

для литосферы:

c; (II.13)

для астеносферы:

c; (II.14)

для нижней мантии (нижний предел h):

c; (II.15)

для внешнего («жидкого») ядра (верхний предел h):

c. (II.16)

Таким образом, учитывая, что 1 год = 107 с, имеем период релаксации для земной сферы в целом 10 лет, для литосферы – 10 тыс. лет, для астеносферы – 1 тыс. лет, для нижней мантии – 100 тыс. лет и для внешнего ядра – от бесконечности до 1 с. Из приведенного видно, что для нижней мантии величина h, очевидно, сильно занижена, вероятнее всего (см. далее), t здесь измеряется многими миллионами, если не сотнями миллионов лет. Сравнивая h в среднем для Земли и h для ядра, можно заключить, что приведенные предельные значения t для ядра нереальны. Первое (t = ¥ ) соответствует абсолютно твердому телу, второе (t = 1 с) – ньютоновской жидкости, мгновенно реагирующей на приложенное напряжение. Как мы видели выше, ни то ни другое в ядре не наблюдается. Скорее всего реальное значение h надо искать где-то посредине между 109 и бесконечностью, чтобы полученная величина была близка к 107 с. Возможны значения h = 101 – 102 пуаз. Но в этом случае нам придется объяснить причину непрохождения через внешнее ядро поперечных волн нежидким его состоянием. В свете современной теории поведения высокопроводящей плазмы в магнитном поле такое объяснить возможно. Об этом мы будем говорить при рассмотрении проблемы генерации геомагнитного поля.

Важнейший вывод, который следует из сравнения параметров жесткости и вязкости Земли, заключается в том, что верхние оболочки и внешнее ядро сферы в масштабе десятков тысяч лет можно рассматривать как пластичное тело. Для существенно меньших интервалов времени это упругая среда, подчиняющаяся закону Гука. В этом заключается фундаментальная физическая особенность Земли как планетного тела, из которой вытекают важные геофизические и тектонические следствия в приложении к перисфере Земли. В частности, меньшая по сравнению с литосферой вязкость астеносферного слоя (волновод Гутенберга) подтверждается тем, что 97% всех зарегистрированных землетрясений имеют очаги не глубже 30 – 50 км (Гутенберг, 1963). Глубокие же землетрясения (300 – 720 км), выходящие за пределы волновода, имеют ограниченное распространение и приурочены главным образом к узким линейным зонам континентальной окраины и островных дуг, где, вероятно, физические условия состояния вещества волновода нарушены (Ботт, 1974). Иными словами, столь характерная сейсмичность перисферы обусловлена малым периодом релаксации подстилающего ее материала, отчего возникающие здесь напряжения успевают рассасываться без разрыва сплошности пород. Поскольку интервал времени между главными циклами тектонегенеза составляет примерно 100 млн. лет (Штилле, 1964), то для того, чтобы удовлетворить этому порядку в выражении (II.45) для нижней мантии, мы должны принять h = 1027 пуаз, тогда t будет равно 1015 с, или 108 лет.