Смекни!
smekni.com

Обзор методов определения форм и частот колебаний узлов и деталей (стр. 2 из 3)

Так как измерение ускорения сопровождается подчеркиванием высокочастотных составляющих исследуемого процесса, ускорению механических колебаний отдается предпочтение при измерении и анализе в диапазоне, перекрывающем область высоких частот.

К характерным свойствам механических систем относится то, что заметные смещения происходят только медленно, т. е. их составляющие находятся только в области низких частот. Следовательно, измерение и анализ смещения не являются задачами первостепенной важности при общем исследовании механических колебаний. Однако, смещение играет важную роль у машин и механизмов, сконструированных с учетом малых зазоров между отдельными элементами и деталями. Смещение также часто служит параметром при балансировке вращающихся элементов, так как относительно большие смещения наблюдаются на частоте вращения балансируемой детали. Отметим, что эта частота является наиболее важной при балансировке.

Области применения методов анализа вибрации на различных этапах жизненного цикла машин и оборудования

В жизненном цикле машины или оборудования при разделении на группы по используемым методам и средствам вибрационной диагностики можно выделить три основных этапа:

проектирование и исследование опытных образцов;

изготовление или ремонт серийной продукции, ее монтаж и наладка на месте эксплуатации;

контроль состояния в процессе эксплуатации между ремонтами.

Основной задачей, решаемой с применением средств измерения и анализа вибрации на первом этапе, является борьба с вибрацией машин и оборудования путем снижения величин колебательных сил в источнике и оптимизации механических свойств отдельных узлов и элементов. Кроме этого могут решаться задачи оптимизации вибростойкости объекта, т.е. обеспечения надежности машин и оборудования при работе в условиях повышенной вибрации как возбуждаемой самим объектом исследования, так и действующей на объект извне. Наконец, может решаться и еще одна задача - обеспечение контролепригодности машин и оборудования, т.е. подготовки точек контроля вибрации, обеспечивающих получение необходимой диагностической информации на последующих жизненных этапах объекта контроля.

На этом этапе используются в основном методы модального анализа вибрации, позволяющие выявить наиболее опасные формы колебаний объектов, в первую очередь на резонансных частотах и частотах действия основных колебательных сил, например, на частоте вращения агрегатов.

На втором этапе, т.е. при изготовлении (ремонте), монтаже и наладке серийного оборудования с помощью вибрационного анализа решается большой круг задач, к основным из которых можно отнести:

пооперационный контроль изготовления деталей и узлов;

входной контроль комплектующих деталей и узлов;

балансировку роторов на месте монтажа и наладки;

выходной вибрационный контроль;

анализ и устранение причин повышенной вибрации.

Задача пооперационного контроля изготовления деталей и узлов машины и оборудования решается с применением разнообразных методов контроля, из которых к вибрационным можно отнести ультразвуковую дефектоскопию, основанную на анализе отражений и потерь при распространении вибрационных вол, воздаваемых внешним источником.

Входной контроль комплектующих узлов с использованием методов и средств анализа вибрации, возбуджаемой этими узлами, возможен лишь при наличии испытательных стендов, обеспечивающих работу этих узлов в номинальных или специальных режимах. Как правило, применяемые при таком контроле методы анализа вибрации определяются качеством проектирования и изготовления испытательных стендов, которые не должны давать вибрационных помех. Для входного контроля большинства узлов, и в первую очередь подшипников качения, используются спектральные методы анализа их вибрации и достаточно часто спектральные методы анализа огибающей ее высокочастотных компонент.

Для балансировки роторов используются синхронные методы анализа вибрации, и в первую очередь вибрации на частоте вращения балансируемого ротора или другого вращающегося узла. Измерению в каждой из точек контроля подлежат амплитуда вибрации на частоте вращения ротора и ее фаза относительно опорного сигнала с датчика углового положения вала. Рекомендуемая точность измерений амплитуды порядка 5%, фазы - порядка 2% (5-7°). Основные проблемы балансировки связаны с возможностью появления на частоте вращения ротора значительных сил различной природы, которые частично или полностью не могут быть снижены за счет центробежных сил, создаваемых балансировочными массами. Обнаружение и идентификация этих сил требуют применения всего арсенала методов анализа вибрации, используемых диагностами.

Самая сложная по номенкулатуре методов анализа вибрации - это задача выявления и устранения причин повышенной вибрации оборудования после его изготовления (ремонта) или монтажа на месте эксплуатации. Решением этой задачи занимаются специалисты по виброналадке оборудования, и качество ее решения во многом определяется глубиной подготовки этих специалистов, а также опытом работы по виброналадке конкретных типов машин и оборудования.

Основной особенностью проведения работ по виброналадке является то, что при необходимости приходится исследовать вибрацию машин и оборудования в разных режимах функционирования, в том числе ис их частичной разборкой. В процессе виброналадки могут использоваться все виды анализа формы вибрации или ее спектрального анализа, включая синхронный и взаимный спектральный анализ, а также анализ спектров огибающей предварительно выделенных компонент вибрации разной природы.

На третьем этапе, во время эксплуатации машин и оборудования между ремонтами, анализ их вибрации может проводиться для решения следующих задач:

аварийная защита ответственного оборудования;

контроль и прогноз вибрационного состояния (вибрационный мониторинг);

контроль и прогноз технического состояния машин и оборудования (вибрационная диагностика);

планирование сроков и объемов работ по обслуживанию;

проведение работ по обслуживанию и контроль качества их выполнения;

предремонтная дефектация машин и оборудования.

Системы аварийной защиты ответственных машин и оборудования, как правило, имеют несколько параллельных измерительных каналов, и вибрационные каналы входят в нее как составняе части. Необходимая скорость принятия решений в таких системах весьма велика (доли секунды), поэтому глубокого анализа вибрации по этим каналам не требуется, а лишь непрерывное измерение уровня низкочастотной вибрации в широкой полосе частот. Нижняя граничная частота этой полосы обычно не превышает половины частоты вращения машины, а верхняя чаще всегосоставляет величину порядка 1000 Гц. Минимальное время реакции на скачкообразный рост вибрации в таком измерительном канале обычно составляет 2-3 оборота ротора.

Достаточно часто в вибрационных каналах аварийной защиты машин с подшипниками скольжения используются проксиметры (измерительные преобразователи относительного перемещения вала), которые параллельно с защитой обеспечивают решение задач вибрационного мониторинга на основе анализа орбит движения вала в подшипнике.

При отсутствии подшипников скольжения в каналах аварийной защиты, как правило, используются пьезоакселерометры, присем одновременно с фильрацией сигнала вибрации выполняется и его интегрирование с целью измерения нормируемого параметра вибрации, а именно, среднеквадратичного значения виброскорости или вибросмещения.

Сигнал вибрации как с измерительных преобразователей аварийной зациты, так и с дополнительных преобразователей, может одновременно использоваться для решения задач вибрационного мониторинга. Для этого он параллельно анализируется техническими средствами систем мониторинга и, если это неоходимо, средствами диагностики.

Системы вибрационного мониторинга ответственных машин и оборудования в соответствии с рекоментациями действующих стандартов по мониторингу используют, в основном, спектральные методы анализа низкочастотной вибрации. В некоторых системах используются также методы анализа формы низкочастотных колебаний (орбиты движения вала в подшипниках скольжения) или синхронного частотного и спектрального анализа вибрации в режимах пуска и выбега машины.

Поскольку многие из спектральных составляющих низкочастотной вибрации машин растут при появлении некоторых дефектов задолго до возникновения аварийной ситуации, по данным вибрационного мониторинга иногда удается обнаружить предаварийное состояние машины, а в некоторых случаях при построении трендов изменения ее вибрационного состояния во времени прогнозировать время наступления аварийной ситуации.

В рамках вибрационной диагностики машин и оборудования могут решаться две разные задачи. Первая - идентификация причин изменения вибрационного состояния, обнаруженного средствами мониторинга. Для ее решения обычно не требуется дополнительных средств измерения и анализа вибрации. Другая задача - контроль и прогноз технического состояния объекта контроля, которые невозможны без обнаружения всех основных видов дефектов на ранней стадии развития. Поскольку средствами измерения и анализа вибрации, используемыми для мониторинга, можно обнаружить лишь некоторые из развитых дефектов, вопросами контроля и прогноза технического состояния машин и оборудования занимается специальный раздел превентивной вибрационной диагностики.

Задачей такой диагностики являются обнаружение и идентификация всех основных видов дефектов на стадии зарождения, наблюдение за их развитием и прогноз на этой основе технического состояния объектов контроля. По сигналу вибрации абсолютное большинство дефектов на стадии зарождения обнаруживается лишь в машинах роторного типа, без узлов возвратно-поступательного вида. Зарождающийся дефект из-за малой величины колебательных сил модет возбуждать заметную вибрацию преимущественно на высоких частотах и только в зоне, ближайшей к месту возникновения дефекта. Поэтому методы анализа низкочастотной вибрации, используемые в задачах вибрационного мониторинга, не обеспечивают обнаружения большинства возможных дефектов на стадии зарождения.