Смекни!
smekni.com

Асимптотика решений дифференциальных уравнений (стр. 2 из 6)

Из сравнения рис. 1 и 4 видно, что имеющиеся в них различия проявляются в дифракционном «замывании» части дислокаций. Различия усиливаются с ростом координаты z по мере того, как ухудшается периодическая воспроизводимость первоначальной структуры поля. Это видно, в частности, из рис. 5, на котором изображено продольное распределение интенсивности для параметров

Распределения, приведенные на рис.2 и 5, близки лишь в ближней зоне, для которой характерны узкие зоны, где концентрируется энергия светового потока. В дальней зоне дифракции перекрытие гауссовых угловых компонент излучения ослабевает, и структура излучения кардинальным образом отличается от структуры безграничной волны: излучение представляет собой «веер» пучков, интенсивность которых убывает с увеличением угла наклона.

Фазовая модуляция гауссова пучка по двум поперечным координатам, если ее глубина превышает указанную выше критическую глубину, приводит к появлению на волновом фронте БД. Как и в безграничной волне, эти БД обладают определенной продольной длиной, увеличивающейся с ростом глубины модуляции. Это свойство БД значительно облегчает их экспериментальное обнаружение. В дальней зоне дифракции вследствие изменения фазы в начальной плоскости по двум координатам будут формироваться два веера пучков, располагающихся во взаимно перпендикулярных плоскостях.

Заметим в заключение, что результаты выполненного анализа могут быть частично перенесены и на случай нерегулярной плавной модуляции ВФ, если длина рассматриваемой пространственной области сопоставима с величиной аЦк, где ап - характерный размер нерегулярных возмущений ВФ. В частности, это относится к образованию в световом поле каналов с повышенной интенсивностью и к появлению дислокаций волнового фронта при превышении фазовыми возмущениями определенного значения.

Таким образом, плавные возмущения ВФ играют важную роль в трансформации амплитудно-фазового профиля излучения и в формировании каустических и дислокационных образований. Появление каустик и дислокаций волнового фронта носит пороговый характер и непосредственно связано с глубиной первоначальной модуляции фазы. Для практики важным является то, что появление указанных образований в лазерном пучке сопряжено с формированием узких каналов, в которых интенсивность излучения значительно превышает среднюю.

Работа выполнена при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия».


1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром

Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных:


или, в векторной форме



где

— малый положительный параметр,
— неизвестные функции времени t, характеризующие данную систему.

В работах (х) — (5) находится асимптотика решений системы (1.1) в случае, когда при каждом zлюбое решение системы «быстрых движений» **

при

приближается либо к устойчивому положению равновесия, либо к устойчивому предельному циклу.


Но возможны случаи, когда система «быстрых движений» (1.2) может не иметь асимптотически устойчивых положений равновесия и изолированных предельных циклов. Такова, например, гамильтонова система. Целью настоящей работы и является изучение этих случаев. Так, в § 2 с точностью до величин порядка О (г) находится решение системы (1.1), для которой соответствующая система «быстрых движений» гамильтонова и к = 2, т. е. находится решение системы

Асимптотические формулы для решения этой системы находятся для области, где траектории соответствующей гамильтоновой системы «быстрых движений» при каждом векторе zзамкнуты (в случае невырожденного центра в рассматриваемую область включается и сам центр). Метод исследования системы (1.3) таков: сначала рассматривается система «быстрых движений» (1.4), а затем система (1.3) после соответствующей замены переменных усредняется вдоль решений (1.4). Оказывается, что уравнение с малым параметром и. при старшей производной и с пропущенной в основном члене Q (п — 1)-й производной, исследованное В.М. Волосовым (при п — 2 — в работе (12Г), при F ~ О — в 'работах (8) — (п)) методом конечных разностей, является частным случаем системы (1.3). Поэтому результаты работ (8) — (12) (эти результаты сформулированы в § 3 настоящей работы) следуют из результатов § 2.

Метод построения решения уравнения (1.5) при п = 2 с любой наперед заданной точностью в случае, когда известно общее решение (в форме разложения в тригонометрический ряд Фурье) соответствующего невозмущенного уравнения был дан в работе Ю.А. Митрополъским.


Задача исследования системы (1.3) с точки зрения работ (3) — (4) и вывода из нее известных результатов В.М. Волосова [работы (8) — (12)] относительно уравнения (1.5) была поставлена Л.С. Понтрягиным в его докладе на семинаре В.И. Смирнова в Ленинграде в середине апреля 1957 г.

Выражаю глубокую благодарность Л.С. Понтрягину за ценные указания, советы и постоянное внимание к настоящей работе.

1.1 Асимптотическое поведение решений системы

Система (1.3) в векторной форме имеет вид:



глк, в быстром времени

При е = 0 система (2.1') переходит в гамильтонову систему


являющуюся системой «быстрых движений» для системы (2.1). 1. Изучение системы (2.2). Пусть функции

определены и непрерывны вместе со всеми своими первыми частными производными в некоторой области Gэвклидова пространства E2+iпеременных х, у, zi,..., zi. Как известно, система (2.2) имеет первый интеграл

и (2.3) представляет собой семейство всех фазовых траекторий системы(2.2) на кажтгой плоскости z= constобласти G.

Возьмем некоторую точку (х,у, z) из G, не являющуюся положением равновесия системы (2.2). По известной теореме существования и единственности решений системы обыкновенных дифференциальных уравнений, через эту точку пройдет только одна фазовая траектория системы

(2.2). Уравнение этой траектории запишется в виде:

(см. (2.3)).

Докажем следующее утверждение.

Пусть траектория (2.4) замкнута и целиком лежит внутри области G. Тогда в пространстве E2+i существует некоторая окрестность G этой траектории (2.4) такая, что

1)фазовые траектории системы (2.2), проходящие через точки G, замкнуты и целиком лежат в G;

2)уравнение (2.3) при каждой паре (/г, z) определяет одну и только одну фазовую траекторию системы (2.2), расположенную в G;

3)на каждой фазовой траектории (2.3) системы (2.2), лежащей в G, можно выбрать по одной точке

, гладко зависящей от

В самом деле, в силу известных свойств гамильтоновой системы, в пространстве E2+iсуществует некоторая окрестность Gтраектории (2.4) (GdG), в которой выполняется условие 1). Выделим из Gту окрестность траектории (2.4), в которой выполняются и условия 2), 3). Для этого возьмем поверхность, пересекающую каждую плоскость z = const области G