Смекни!
smekni.com

Математика и современный мир (стр. 1 из 5)

Содержание

1. Общие сведения о математике

2. Основные понятия математики

3. Что такое математический язык?

4. Аксиоматический метод

5. Математические структуры

5. Функции и графики

Список использованной литературы

1. Общие сведения о математике

До начала 17 в. математика - преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах; изучаемые ею величины (длины, площади, объемы и пр.) рассматриваются как постоянные. К этому периоду относится возникновение арифметики, геометрии, позднее - алгебры и тригонометрии и некоторых частных приемов математического анализа. Областью применения математики являлись: счет, торговля, землемерные работы, астрономия, отчасти архитектура.

В 17 и 18 вв. потребности бурно развивавшегося естествознания и техники (мореплавания, астрономии, баллистики, гидравлики и т.д.) привели к введению в математику идей движения и изменения, прежде всего в форме переменных величин и функциональной зависимости между ними. Это повлекло за собой создание аналитической геометрии, дифференциального и интегрального исчислений. В 18 в. возникают и развиваются теория дифференциальных уравнений, дифференциальная геометрия и т.д. В 19-20 вв. математика поднимается на новые ступени абстракции. Обычные величины и числа оказываются лишь частными случаями объектов, изучаемых в современной алгебре; геометрия переходит к исследованию "пространств", весьма частным случаем которых является евклидово пространство. Развиваются новые дисциплины: теория функций комплексного переменного, теория групп, проективная геометрия, неевклидова геометрия, теория множеств, математическая логика, функциональный анализ и др. Практическое освоение результатов теоретического математического исследования требует получения ответа на поставленную задачу в числовой форме.

В связи с этим в 19-20 вв. численные методы математики вырастают в самостоятельную ее ветвь - вычислительную математику. Стремление упростить и ускорить решение ряда трудоемких вычислительных задач привело к созданию вычислительных машин. Потребности развития самой математики, "математизация" различных областей науки, проникновение математических методов во многие сферы практической деятельности, быстрый прогресс вычислительной техники привели к появлению целого ряда новых математических дисциплин, как например, теория игр, теория информации, теория графов, дискретная математика, теория оптимального управления.

Математика - область человеческого знания, изучающая математические модели, отражающие объективные свойства и связи. "Замечательно, - пишет В.А. Успенский, - что хотя математическая модель создается человеческим разумом, она, будучи создана, может стать предметом объективного изучения. Познавая ее свойства, мы тем самым познаем и свойства отраженной моделью реальности" Кроме того, математика дает удобные способы описания самых разнообразных явлений реального мира и тем самым выполняет роль языка науки. Наконец, математика дает людям методы изучения и познания окружающего мира, методы исследования как теоретических, так и практических проблем.

Математика (греч. mathematike, от mathema - знание, наука) наука, в которой изучаются пространственные формы и количественные отношения.

Современное понятие математики - наука о математических структурах (множествах, между элементами которых определены некоторые отношения).

У представителей науки начала 19 века, не являющихся математиками, можно найти такие общедоступные определения математики.

"Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира" (Ф. Энгельс).

"Математика - наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. Математика может быть чистой и прикладной.

Математика делится на арифметику и геометрию; первая располагает цифрами, вторая - протяжениями и пространствами. Алгебра заменяет цифры более общими знаками, буквами; аналитика добивается выразить все общими формулами, уравнениями, без помощи чертежа" (В. Даль).

Современная математика насчитывает множество математических теорий: математическая статистика и теория вероятности, математическое моделирование, численные методы, теория групп, теория чисел, векторная алгебра, теория множеств, аналитическая и проективная геометрия, математический анализ и т.д.

Несмотря на то, что математических теорий достаточно много и они, на первый взгляд, могут и не иметь ничего общего, внутренняя эволюция математической науки упрочила единство ее различных частей и создала центральное ядро. Существенным в этой эволюции является систематизация отношений, существующих между различными математическими теориями; ее итогом явилось направление, которое обычно называют "аксиоматический метод". В теории, построенной в согласии с аксиоматическим методом, начинают с небольшого количества неопределяемых (первичных) понятий, с помощью которых образуются утверждения, называемые аксиомами.

Прочие понятия, изучаемые в теории, определяются через первичные, и из аксиом и определений выводятся теоремы. Теория становится рекурсивно структурированной, ее можно представить в виде матрешки, в которой понятия и их свойства как бы являются вложенными друг в друга. Каждая математическая теория является цепочкой высказываний, которые выводятся друг из друга согласно правилам логики, т.е. объединяющим началом математики является "дедуктивное рассуждение". Развитие математической теории в таком стиле - это первый шаг по направлению к ее формализации.

Открытие неевклидовых геометрий и создание теории множеств привели к перестройке всего здания математики и созданию совершенно новых ее отраслей. Важное значение приобрела в современной математике математическая логика. Методы математики широко используются в точном естествознании. Применение ее в биологии и общественных науках до последнего времени носило случайный характер. Создание (под непосредственным влиянием практики) таких отраслей, как линейное программирование, теория игр, теория информации, и появление электронных математических машин открывают здесь совершенно новые перспективы. Философские вопросы математики (характер и происхождение математической абстракции, ее особенности) всегда являлись ареной борьбы между материализмом и идеализмом. Особенно важное значение имеют философские вопросы, возникшие в связи с проблемами оснований математики.

Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическими и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности. Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.

Современная математика имеет следующие основные разделы:

1. Элементарная математика: алгебра, геометрия и тригонометрия (на плоскости и сфере).

2. Аналитическая геометрия (на плоскости и в пространстве).

3. Функции и пределы. Дифференциальное и интегральное исчисление.

4. Векторный анализ. Системы криволинейных координат.

5. Функции комплексного переменного.

6. Преобразование Лапласа и другие интегральные преобразования.

7. Дифференциальные уравнения.

8. Максимумы и минимумы.

9. Математические модели. Абстрактная алгебра и абстрактные пространства.

10. Матрицы. Квадратичные и эрмитовы формы.

11. Линейные векторные пространства и линейные операторы. Матричное представление линейных преобразований.

12. Интегральные уравнения, краевые задачи и задачи о собственных значениях.

13. Тензорная алгебра и тензорный анализ.

14. Дифференциальная геометрия.

15. Теория вероятностей.

16. Теория случайных процессов.

17. Математическая статистика.

18. Численные методы и конечные разности.

2. Основные понятия математики

Число, одно из основных понятий математики. В связи со счетом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затем идея о безграничности натурального ряда чисел: 1, 2, 3,4... Задачи измерения длин, площадей и т.п., а также выделение долей именованных величин привели к понятию рационального (дробного) числа. Понятие об отрицательных числах возникло у индийцев в 6-11 вв. Потребность в точном выражении отношений величин (напр., отношение диагонали квадрата к его стороне) привела к введению иррациональных чисел, которые выражаются через рациональные числа лишь приближенно; рациональные и иррациональные числа составляют совокупность действительных чисел. Окончательное развитие теория действительных чисел получила в связи с потребностями математического анализа. В связи с решением квадратных и кубических уравнений были введены комплексные числа.

Делимость, свойство целого числа делиться на другое целое число без остатка. Простейшие признаки делимости: число делится на 2, если его последняя цифра делится на 2; на 3 или на 9, если сумма цифр делится соответственно на 3 или на 9; на 5, если оно оканчивается на 0 или 5.

Единица, наименьшее из натуральных чисел n = 1. В современной математике понятие единицы (единичного элемента) рассматривают в алгебраических структурах более общей природы (напр., группах).

Сложение, арифметическое действие. Обозначается знаком + (плюс). В области целых положительных чисел (натуральных чисел) в результате сложения по данным числам (слагаемым) находится новое число (сумма), содержащее столько единиц, сколько их содержится во всех слагаемых. Действие сложения определяется также для случая произвольных действительных или комплексных чисел, векторов и т.д.