Смекни!
smekni.com

Решение алгебраического уравнения n-ой степени (стр. 1 из 4)

B.А. Будников

Б 903 Решение алгебраического уравнения n-ой степени - Новосибирск: Интернет, Блоги: budnikov57@mail.ru, 2010. - 26 с.

В работе предложено аналитическое решение (в радикалах) алгебраического уравнения n- ой степени. Решены Проблемы собственных значений для нахождения Функций от Матриц и устойчивости решений линейных дифференциальных и разностных уравнений. Метод решения основан на последовательном получении алгебраического уравнения относительно квадратов независимой переменной и его Решении с последующим возвратом к корням исходного уравнения. Метод характеризуется простотой и требует только умения решать квадратные уравнения и извлекать корни n- ой степени из комплексного числа. Алгоритм решения легко поддаётся программированию. Приведены конкретные примеры решения алгебраических уравнений с третьей по восьмую степень включительно.

Статья может быть полезна Специалистам, занимающимся решением задач Высшей Алгебры, а также Студентам высших учебных заведений, интересующимся сложными математическими Проблемами.

Введение

Проблема решения в радикалах алгебраического уравнения произвольной степени, так называемого Векового уравнения, интересовала математиков всех времён и народов. Удача Тартальи и Феррари в решении уравнений третьей и четвёртой степеней внесла надежду на успехи в этом направлении и далее. Однако Решения долгое время найти не удавалось / 1/. Могу с уверенностью сказать, что все Великие математики, в течение последних пятисот лет, занимались решением уравнений высших степеней. Уравнение пятой степени решали Ньютон, Лейбниц, Лагранж, Эйлер, Гаусс, Тэйлор, Абель, Галуа, Пуанкаре, Клейн, Гильберт и многие другие (Список можно было бы ещё долго продолжать). В справочниках по высшей Математике сказано, что НЕ СУЩЕСТВУЕТ решения в радикалах алгебраических уравнений выше четвёртой степени / 2/. Казалось бы, не существует и решать не надо! Однако в Технике очень важно выбирать параметры Систем в соответствие с принципами Оптимальности, чтобы Объекты, описываемые системами дифференциальных или разностных уравнений, удовлетворяли заданному Критерию качества (например, минимуму потребляемой Энергии или максимальному быстродействию).

Для пояснения дальнейших рассуждений введём систему условных обозначений.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ:

* - знак умножения,

** - знак возведения в степень,

ABS (x) - абсолютная величина комплексной переменной x,

Rex, Imx- действительная и мнимая величины комплексной переменной x соответственно,

Modx, Fix- модуль и угол комплексной переменной xсоответственно,

SIN (x), COS (x) - тригонометрические функции sinx и cosx,

ARCTAN (Imx, Rex) - обратная тригонометрическая функция arctg ( (Imx) / (Rex)).

SQRT (x) - операция извлечения квадратного корня из действительного числа x.

PI = 3.141592653589793 - число π.

В 1683 году друг Г.В. Лейбница Э.В. фон Чирнгауз (1651 - 1708) опубликовал в журнале "ActaEruditorum" метод преобразования алгебраического уравнения в уравнение той же степени с меньшим числом членов.

Чирнгауз из уравнения

(x**n) + A1* (x** (n - 1)) + A2* (x** (n- 2)) + … + An = 0,

и уравнения с неопределёнными коэффициентами

y = B1* (x** (n- 2)) + B2* (x** (n- 3)) + … + Bn-1,

исключал x. Он полагал, что в полученном уравнении

(y**n) + C1* (y** (n - 1)) + C2* (y** (n - 2)) + … + Cn = 0,

можно будет подобрать коэффициенты Bi, от которых зависят Ci, так, что все коэффициенты Ci, кроме одного, обратятся в нуль. Тогда последнее уравнение примет вид

( y**n) + Cn = 0,

и исходное уравнение относительно переменной x будет разрешимо в радикалах.

Отметим, что в общем случае коэффициент Cnможет быть комплексной величиной, для которой, в соответствие с теорией функций комплексного переменного, существуют понятия модуля и угла вектора на комплексной плоскости. Для упрощения рассуждений будем полагать коэффициент Cn действительной величиной ( (-Cn) > 0)

Пусть q = (-Cn) ** (1/n), тогда уравнение относительно переменной yiлегко может быть решено

yi = q* (COS (2* (i - 1) *PI/ n) + j*SIN (2* (i - 1) *PI/ n),

где q- арифметический корень n- ой степени из числа (-Cn),

i- порядковый номер корня уравнения, i = 1, n;

j- квадратный корень из ( - 1), мнимая величина.

Выражение COS (2* (i - 1) *PI/ n) + j*SIN (2* (2* (i - 1) *PI/ n) задаёт корни уравнения

( (x**n) - 1) / (x- 1) = 1 + x + (x**2) + … + (x** (n- 1)) = 0.

Последнее представляет собой выражение для суммы nчленов геометрической прогрессии с основанием x.

Чирнгаузу удалось решить таким образом уравнение при n = 3, но в общем случае приём к цели не приводил. Лейбниц, которому Чирнгауз сообщил письмом в 1677 году идею метода, заметил, что ничего не получается даже для уравнения пятой степени.

Исаак Ньютон (1643 - 1727) после безуспешных попыток точно решить уравнение пятой степени разработал приближённый метод численного определения действительного корня алгебраического уравнения произвольной степени, получивший его имя и используемый до сих пор (так называемый метод касательных Ньютона). Суть метода заключается в следующем: Предположим, что действительный корень заданного алгебраического уравнения y1 находится в интервале (a, b).

Вычисляют значение алгебраической функции F (a) или F (b), ( F (a) = (a**n) + A1* (a** (n- 1)) + A2* (a** (n- 2)) + …+ An), записывают уравнение касательной в этой точке и определяют точку пересечения касательной с осью абсцисс, которой присваивают новое значение a или b.

Процесс вычислений выполняют до тех пор, пока не будет достигнута требуемая степень точности вычислений EPS (y1 = aили y1 = b в зависимости от того с какой стороны (слева или справа) решено приблизиться к корню y1).

Метод всегда сходится, но НИЧЕГО не говорит об оптимальных значениях коэффициентов уравнения, которые непосредственно связаны с параметрами Систем.

Следующий этап развития теории решения уравнений связан с творчеством Леонарда Эйлера (1707 - 1783), который, как и все предшественники, считал возможным решение уравнений любой степени.

Эйлер установил, что уравнения второй, третьей, четвёртой степеней сводятся к уравнениям первой, второй и третьей степеней, которые он назвал "разрешающими уравнениями", резольвентами.

Резольвенту приведённого кубического уравнения (x**3) + B2* x+ B3 = 0, Эйлер получил, положив

x = (A** (1/ 3)) + (B** (1/ 3)).

Для приведённого уравнения четвёртой степени (x**4) + B2* (x**2) + B3*x + B4 = 0, он рекомендовал подстановку

x= (A** (1/ 4)) + (B** (1/ 4)) + (C** (1/ 4)).


Тем самым он открыл ДРУГОЙ способ решения уравнения четвёртой степени, отличный от решения Феррари.

Эйлер полагал, что приведённое уравнение n-ой степени

(x**n) + B2* (x** (n - 2)) + B3* (x** (n - 3)) + … + Bn = 0,

может быть решено с помощью подстановки

x= (A** (1/ n)) + (B** (1/ n)) + … + (G** (1/ n)),

где число слагаемых равно (n- 1). Им использовались и другие подстановки. Однако уравнение выше четвёртой степени Эйлеру решить не удалось.

При доказательстве невозможности решения уравнения пятой степени Н.Х. Абель (1802 - 1829) опирался на предложенную Эйлером подстановку

x = w + A* ( (v** (1/ 5)) + B* ( (v** (2/ 5)) + C* ( (v** (3/ 5)) + D* ( (v** (4/ 5)),

применив опыт великого Математика в своей работе.

Феликсом Клейном (1849 - 1925) написана монография / 3/, в которой наиболее полно показана сложность нахождения точного решения уравнения пятой степени. Книга содержит 336 страниц текста, а решения - нет! Оговорюсь сразу, что я вовсе не собираюсь принижать вклад Великих математиков в Науку, напротив, преклоняюсь перед их Волей и Настойчивостью при решении столь сложной Задачи. Они, как все лучшие представители Человечества, опережали своё Время. При отсутствии средств вычислительной техники все попытки были обречены: не было не только персональных компьютеров, но даже простых калькуляторов. Точность вычислений на логарифмической линейке для этой цели оставляла желать лучшего.

Мне удалось решить алгебраическое уравнение n- ой степени в радикалах, но Решение это - приближённое и требует вычислений с высокой степенью точности. За всё надо платить, бесплатно НИЧЕГО не даётся! Для определения корней уравнения не требуется знание интервала, где алгебраическая функция меняет свой знак (интервала нахождения действительного корня), что отличает разработанный Метод решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n- ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с любой степенью точности, если мощность персонального компьютера позволяет избежать влияния погрешностей округления на вычисления.

Отметим также, что с Решением Векового уравнения решаются Проблемы собственных значений при вычислении Функций от Матриц и Устойчивости решений линейных дифференциальных и разностных уравнений, описывающих движения сложных технических Объектов с постоянной и переменной структурой (например, вентильных преобразователей). В любом учебнике по Теории Автоматического Управления / 4/ можно прочитать: Решение линейного дифференциального уравнения устойчиво, если все корни характеристического уравнения лежат в левой полуплоскости комплексной плоскости корней. Решение разностного уравнения устойчиво, если все корни характеристического уравнения находятся внутри круга единичного радиуса на комплексной плоскости с центром в начале координат.

Оптимальное управление Системами требует отдельного рассмотрения. Скажу лишь, что Оптимальные параметры Систем могут быть достигнуты на Границе устойчивости.

Ниже приводятся СУТЬ метода Решения алгебраических уравнений и конкретные Примеры определения корней уравнений с третьей по восьмую степень включительно, доказывающие ПРАВИЛЬНОСТЬ полученных результатов и уже изложенные автором в других работах / 5, 6/.

ПОСТАНОВКА ЗАДАЧИ

Общий вид алгебраического уравнения n- ой степени

(x**n) + A1* (x** (n-1)) + A2* (x** (n-2)) + … + A (n-1) *x + An = 0, (1)

где

n- порядок алгебраического уравнения, ___