Смекни!
smekni.com

Решение произвольных систем линейных уравнений (стр. 2 из 2)

3. Метод Гаусса

Для решения произвольных однородных систем линейных алгебраических уравнений удобен метод Гаусса. Основан он на следующем.

При вычислении ранга расширенной матрицы системы линейных алгебраических уравнений с помощью элементарных преобразований ее приводят к трапецеидальному виду:

.

Но если исходная матрица соответствует исходной системе уравнений, то трапецеидальная матрица будет соответствовать той же системе, но в измененном виде.

Особенность трапецеидальной матрицы заключается в том, что каждая ее последующая строка имеет на один ноль больше и, соответственно, на один коэффициент не равный нулю меньше. Строки, целиком состоящие из нулей, соответствуют исчезнувшим уравнениям. В последней строке будет один коэффициент не равный нулю и, значит, одна неизвестная в уравнении для определенной системы. В случае неопределенной системы в последнем уравнении будет одна базисная переменная и несколько свободных.

Находя эту базисную неизвестную из последнего уравнения, переходим затем к предпоследней строке и соответствующему ей уравнению и находим следующую базисную неизвестную. Эта операция повторяется до первой строки. После вычисления всех базисных неизвестных составляется нормированная фундаментальная система решений однородной системы линейных алгебраических уравнений.


4. Решение неоднородных систем линейных алгебраических уравнений

Выясним, чем отличается решение произвольной неоднородной системы алгебраических уравнений от решения однородной системы.

Определение. Однородная система линейных алгебраических уравнений называется соответствующей неоднородной системе, если коэффициенты при неизвестных у них одинаковые, а свободные члены неоднородной системы заменены нолями.

Рассмотрим произвольную совместную неоднородную систему линейных алгебраических уравнений:

Пусть у нее в общем случае

, то есть имеется бесконечное множество решений.

Теорема 4.1. Сумма любого решения неоднородной системы линейных алгебраических уравнений с любым решением соответствующей ей однородной системы является решением неоднородной системы.

Доказательство. Возьмем произвольное решение неоднородной системы


и произвольное решение соответствующей ей однородной системы

.

Рассмотрим их сумму

.

Если данная сумма является решением неоднородной системы, то она должна превратить в тождество любое ее уравнение:

что и требовалось доказать.

Теорема 4.2. Разность любых двух решений неоднородной системы линейных алгебраических уравнений является решением соответствующей однородной системы.

Доказательство. Возьмем два произвольных решения неоднородной системы линейных алгебраических уравнений:

и
.

Составим их разность

.

Подставим полученную разность в любое уравнение неоднородной системы:

Так как левая часть уравнения обратилась в ноль, значит,

является решением однородной системы, что и требовалось доказать.

Из теоремы 4.2 следует, что если

, то
. Иначе говоря, взяв какое-то одно решение неоднородной системы линейных алгебраических уравнений
и прибавляя к нему разные решения соответствующей однородной системы
, получим разные решения неоднородной системы, что подтверждается теоремой 4.1.

Следствие. Общее решение неоднородной системы линейных алгебраических уравнений равно сумме какого-то частного ее решения и общего решения соответствующей однородной системы.

Литература

1. Краснов М. Вся высшая математика т.1 изд.2. Едиториал УРСС, 2003. – 328с.

2. Мироненко Е. С. Высшая математика. М: Высшая школа, 2002. – 109с.

3. Черненко В. Д. Высшая математика в примерах и задачах. В трех томах. ПОЛИТЕХНИКА, 2003.

4. Шипачев В. С. Высшая математика изд.7 Изд-во: ВЫСШАЯ ШКОЛА, 2005. – 479с.