Смекни!
smekni.com

Отрицания и антитезы в E-структурах (стр. 2 из 3)

Можно легко доказать, что добавление любого из этих суждений-антитез в E-структуру инициирует коллизию парадокса.

Антитезы часто используются в полемике. В естественных рассуждениях контраргументы (или контрдоводы) нередко формулируются как антитезы. Если в рассуждении присутствует в качестве посылки или в качестве следствия какое-либо суждение K, то контраргументом в этом случае является не вызывающее сомнений суждение, являющееся антитезой K. Если нашу антитезу невозможно опровергнуть, то можно считать, что мы переспорили оппонента тчательно используя при этом индукцию и абдукцию. В философии и логике считается, что индукция и абдукция – это более высокие по сравнению с дедукцией формы мышления, непосредственно связанные с творческим мышлением, т.е. с мышлением, результатом которого являются новые знания.

Но в современной логике отсутствует однозначное определение абдукции. Считается, что абдуктивные выводы были предложены одним из создателей математической логики Ч. Пирсом. Исследуя теорию силлогистики Аристотеля, он предложил модифицировать ее, чтобы получать не только дедуктивные выводы, но и правдоподобные рассуждения. Рассмотрим в качестве примера один из силлогизмов Л. Кэрролла. Даны посылки:

1) Все молчаливые существа не забавны;

2) Все улитки молчаливы.

Если использовать правила силлогистики, то получим следствие:

Все улитки не забавны.

Это же следствие можно легко получить и с помощью E-структур. Из схемы этого силлогизма Пирс построил два других типа рассуждения. Одно из них он назвал принятием гипотезы, а позже предложил назвать "абдукцией". Вот это рассуждение.

Исходная посылка: Все улитки молчаливы.

Получен результат: Все улитки не забавны.

Далее рассуждаем так: чтобы этот результат был следствием исходной посылки, необходимо в состав посылок добавить гипотезу "Все улитки молчаливы". Поиск такой посылки как раз и есть абдуктивный вывод.

Для простого силлогизма подобная схема рассуждения была известна намного раньше исследований Ч. Пирса, но она имеет другое название – энтимема, т.е. рассуждение с пропущенной посылкой. Рассмотрим подробно известный пример. Дано рассуждение «Этот человек не знает дорогу к реке. Следовательно, он не местный житель». Это по сути силлогизм с пропущенной посылкой. Для его анализа используем E‑структуры.

Введем обозначения: H – этот человек, K – знающий дорогу к реке, V – местный житель. Исходной посылкой является связь H®

, предполагаемым следствием H®
. Данное рассуждение можно представить в виде диаграммы (рис. 1). Здесь посылка изображена сплошной линией, предполагаемое следствие – пунктиром. Чтобы суждение H®
стало действительным следствием, необходимо, чтобы из вершины H был путь к вершине
. Достаточно посмотреть на рисунок, чтобы сразу же найти "недостающее звено":
®
(рис.48). Контрапозицией этого суждения является V®K (все местные жители знают дорогу к реке).

Рис. 1

Следуя Ч. Пирсу, будем называть абдукцией методы анализа рассуждений, в которых требуется найти подходящую гипотезу для того, чтобы построить корректную логическую связь между исходными посылками и предполагаемым следствием из этих посылок. В отличие от энтимемы абдукция используется в более сложных, чем простой силлогизм, случаях.

Абдукция встречается не только в научном анализе, но и во многих других мыслительных актах, даже в такой, казалось бы, далекой от логики сфере как юмор. В качестве примера проанализируем один анекдот, связанный с известным британским политиком Уинстоном Черчиллем. Как известно, он прекрасно разбирался в тонкостях языка (ему, кстати, была присуждена Нобелевская премия по литературе за мемуары о Второй мировой войне), и его остроты далеко не всем приходились по вкусу. Однажды чем-то обиженная на него леди Астор сказала ему: «Если бы вы были моим мужем, я бы подсыпала вам яд в кофе». Черчилль тут же ответил: «Если бы вы были моей женой, то я бы этот кофе выпил».

Смешное обычно не принято комментировать. Но здесь иная ситуация – ставится задача найти связь комического с абдукцией. Ответ Черчилля внешне безобиден. Однако при этом "домысливается", что его ответу должна предшествовать фраза «А вы мне так неприятны, что... » и предпосылка о том, что в моделируемой ситуации говорящий знает о насыпанном яде. Эти недостающие звенья являются абдуктивным выводом из произнесенных фраз и ситуации, и смех (по крайней мере, у людей с чувством юмора) вызывает не только этот скрытый намек, но и не в последнюю очередь радость, связанная с его самостоятельной и быстрой «расшифровкой».

Алгоритм поиска абдуктивных выводов. Даны исходные посылки и предполагаемое следствие, допустим, P®Q. Тогда выполняются следующие действия:

Шаг 1. Построить структуру с исходными посылками и затем вывести контрапозиции к каждой из посылок.

Шаг 2. Проверить существование в полученной структуре пути из P в Q. Если такого пути нет, то переход к шагу 3, иначе выход из алгоритма с ответом "Для данной задачи абдуктивный вывод не требуется".

Шаг 3. Используя построенную на шаге 1 структуру, построить верхний конус PD и нижний конус QÑ.

Шаг 4. Из полученных на шаге 4 множеств записать все возможные пары (Xi, Yj), где XiÎPD и YjÎQÑ.

Шаг 5. Для каждой пары, полученной на шаге 4, проверить, используя теорему корректность гипотезы Xi,®Yj. Если гипотеза некорректна, то соответствующая пара исключается из списка. Оставшиеся пары являются возможными вариантами ответа. Конец алгоритма.

Неформальное пояснение к алгоритму. С помощью этого алгоритма мы ищем недостающие звенья цепи P®... ®Q, так как разрывы в этой цепи означают, что суждение P®Q не является следствием исходных посылок. Список пар, полученных на шаге 4, является полным списком этих недостающих звеньев, т.е. гипотез. Но некоторые из них могут быть некорректными, поэтому необходим шаг 5.

Рассмотрим, как работает этот алгоритм применительно к нашей задаче.

Шаг 1 и Шаг 2 уже выполнены.

Шаг 3. Из рисунка 50 получаем

AD = {A, B,

},
Ñ = {
, C,
}.

Шаг 4. Список возможных пар:

(A,

), (A, C), (A,
), (B,
), (B, C), (B,
), (
,
), (
, C), (
,
).

Шаг 5. Из этого списка сразу можно исключить пары (A,

) и (
, C), поскольку первая пара соответствует нашему следствию, а вторая – явная коллизия парадокса. Остальные пары необходимо проверить. Например, выполним проверку только двух гипотез A®C и A®
. Проверяем по теореме.

Для гипотезы A®C:

AÑ = {A}; CD= {C,

,
,
,
}; AÑÇCD= Æ; AÑÇInv(CD)={A} –

гипотеза некорректна.

Для гипотезы A®

:

AÑ = {A};

D= {
,
}; AÑÇ
D= Æ; AÑÇInv(
D)=Æ –