Смекни!
smekni.com

Елементи комбінаторики. Початки теорії ймовірностей (стр. 4 из 7)

Оскільки АВ2 = 2R2, то S1= 2R2. Тому


На перший погляд здається, що геометричні ймовірності є мало корисними для застосувань. Проте це не так. Багато задач, серед яких і ті, що висуваються практикою, врешті-решт зводяться до відшукання ймовірності попадання точки в деяку область.

Приклад 2 (задача Бюффона). Нехай на площині проведено паралельні прямі так, що відстань між сусідніми прямими дорівнює 2а. На площину навмання кидають голку завдовжки 2l, l<а. Яка ймовірність того, що голка перетне якусь із цих прямих?

Положення голки однозначно визначається величиною кута де та відстанню від середини голки до найближчої прямої (рис. 302). Отже, можна взяти за простір Ωелементарних наслідків прямокутник

, 0<у<а. Оскільки з ΔACBD= ВС = ABsinx = lsinx, то голка перетне пряму тільки тоді, коли у < d, тобто

(2)

Точки, координати яких задовольняють нерівності (2), утворюють фігуру, заштриховану на рис. 303. Згідно з рівністю (1) площа цієї фігури, поділена на площу прямокутника, і буде дорівнювати шуканій імовірності. Площа прямокутника

. Площа заштрихованої фігури


Формула (3) є корисною при розв'язуванні багатьох задач. Зокрема, користуючись цією формулою, можна наближено обчислити число п. Справді, з формули (3) маємо

Нехай голку кинуто п разів і т разів вона перетнула пряму. При досить великих п віднось Тому при досить великих п відносна частота

як завгодно мало відрізняється від імовірності Р(А). Тому

Під час проведення випробувань голку було кинуто 5000 разів, причому найближчу пряму вона перетнула 2532 рази. Довжина голки була 36 мм, відстань між паралельними прямими 45 мм. Отже,

§ 7. Теорема про додавання ймовірностей несумісних подій

Розглянемо спочатку приклад.

Припустимо, що в урні містяться 5 білих, 3 чорних, 2 червоних і 7 синіх куль. Знайдемо ймовірність того, що з урни вийняли кулю білого або чорного кольору.

Нехай подія А - поява білої кулі, В - поява чорної кулі, С = AUВ -поява білої або чорної кулі. Оскільки події С сприяють 8 наслідків, а число усіх куль в урні дорівнює 17, то Р(С) = Р(А UВ) = 8/17 .

Цю ж імовірність можна знайти інакше: Р(А) =5/17, Р(В) = 3/17, отже,Р{А) + Р(В) = 8/17. Таким чином, Р(А UB) = Р(А) + Р(В).

Теорема 1. Якщо події А і В несумісні (А ∩ В = 0 ), то

Р(А UВ) = Р(А) + Р{В). (1)

Нехай із числа п усіх рівно можливих наслідків m1 результатів є сприятливими для події А, а т2 - для події В. Оскільки події А і В несумісні, то поява події А виключає появу події В і навпаки, тому число випробувань, сприятливих для події AUВ, дорівнює m1 + т2. Звідси на основі класичного означення ймовірності дістаємо

що й треба було довести.

Наслідок 1. Якщо події А1, А2, ..., Аnпопарно несумісні (тобто Ai ∩ Aj= 0 при і≠ j, i,j = 1, 2, ..., п), то

Формула (2) є узагальненням формули (1).

Наслідок 2. Ймовірність протилежної до А події А дорівнює

Справді, оскільки AUА = Ω, (Ω- простір елементарних подій) і P(Ω) = 1, то за теоремою 1 маємо

звідки і дістаємо (3).

Наслідок 3. Якщо попарно несумісні події А1, А2, •...• Аn утворюють повну групу, то сума ймовірностей цих подій дорівнює 1.

Оскільки А1U А2U• … • UАn= Ω і P(Ω) = 1, то за формулою (2) маємо

P(А1)+P( А2)+...+P(Аn)=1. (4)

Приклад 1. У лотереї розігруються 1000 білетів, з них на один припадає виграш 5000 грн., на 10 білетів - виграш по 1000 грн, на 50 білетів -виграш 200 грн, на 100 білетів - виграш 50 грн. Решта білетів невиграшні. Знайти ймовірність виграшу на один білет не менш як 200 грн.

Позначимо події: А - виграш не менш як 200 грн, А1- виграш 200 грн, А2 - виграш 1000 грн, A3 - виграш 5000 грн.

Подія А виражається через об'єднання трьох несумісних подій А1, А2, А3, тобто А = А1U А23. За теоремою 1 дістанемо

P(A)=P(А1)+P( А2)+.P(А3),

або

P(A)= 0,050+ 0,010+ 0,001 = 0,061.

Приклад 2. При прийманні партії підлягає перевірці половина виробів. Умовами приймання передбачається не більше, ніж 2 % бракованих виробів. Визначити ймовірність того, що партію з 100 виробів, яка містить 5 % браку, буде прийнято.

Оскільки 2 % від 50 дорівнює одиниці, то через А позначимо подію, яка полягає в тому, що під час перевірки не отримано жодного бракованого виробу, а через В - лише один бракований виріб. Партію з 100 виробів, яка містить 5 % браку (тобто 5 бракованих виробів), буде прийнято за умови, що має місце або подія А, або подія В. Події А і В є несумісними. Тому за формулою (1) шуканою є ймовірність події C = AUB.

Із 100 виробів 50 можна вибрати C50100) способами. Із 95 небракова-них виробів 50 можна вибрати C5095 способами. Тому

Приклад 3. Для виготовлення деталі придатними є валики з діаметром 11,99 - 12,20 мм. Автомат виготовляє 1 % валиків, діаметр яких менший від 11,99 мм, і 2 % - діаметр яких більший за 12,20 мм. Яка ймовірність того, що навмання взятий з виробленої партії валик буде непридатний для виготовлення деталі?

Нехай А - подія, ймовірність якої треба визначити. Тоді Ặ - подія, яка полягає в тому, що навмання взятий валик придатний.

За формулою (3) знаходимо

§ 8. Теорема додавання ймовірностей довільних подій

Теорема. Якщо А i В - довільні події, то

Якщо події А і В несумісні, то Р(А ∩ В) = Ø, і правильність формули(1) випливає з рівності (1) § 7.

Віднявши від рівності (4) рівність (2), знаходимо

Р(А) + Р(В) = Р(А US)- P(A∩ В),

звідки і випливає рівність (1).


Приклад 2. У групі 30 учнів. З них 12 вивчають німецьку мову, 15 - англійську, 5 - англійську і німецьку, а решта - інші мови. Яка ймовірність того, що навмання вибраний учень вивчає англійську або німецьку?

Позначимо події: А - навмання вибраний учень вивчає німецьку мову; В - навмання вибраний учень вивчає англійську мову. За умовою n(A) = 12, п(В) = 15. Події А і В є сумісними, оскільки А∩В≠Øі n (А∩В) = 5 (рис. 305). Тоді

§ 9. Умовні ймовірності

Часто одна подія А впливає на можливість появи іншої події. В цьому випадку події А і В називають залежними. Нехай, наприклад, з урни, в якій 15 білих і 10 чорних куль, навмання виймають послідовно одну за одною дві кулі. Розглянемо події: А - перша куля біла, В - друга куля біла. Зрозуміло, що Р(А) = 15/25=3/5. Якою буде ймовірність події В?

Якщо подія А відбулася, то серед 24 куль, що залишилися, білих 14 і Р(В) =14/24=7/12; якщо ж подія А не відбулася (перша куля виявилася чорною), то Р{В) =15/24= 5/8.

Отже, ймовірність появи події В залежить від здійснення події А, тобто А і В - залежні події. У такому випадку кажуть, що ймовірність появи події В умовна.

Означення. Нехай А і В - довільні події. Умовною ймовірністю Р(В/А) події В називають ймовірність події B, знайдену в припущенні, що подія А вже відбулася.

Теорема. ЯкщоAiВ- довільні події, причому Р(А) ≠0, то

Р(АПВ) = Р(А)-Р(В/А).(1)

Нехай для події А сприятливими є т рівноможливих наслідків випробування із загальної їх кількості п, а для події А ∩ В – k(рис. 306). Тоді

Проте якщо подія А відбулася, можливі лише ті т наслідків випробування, які є сприятливими для події А, причому kз них очевидно є сприятливими для події В. Отже,

З умови Р(А) ≠ 0 випливає, що т = 0.

Другу з рівностей (2), враховуючи першу з них і рівність (3), можна записати у вигляді

що й треба було довести.

Доведену теорему називають теоремою множення ймовірностей для двох подій. Помінявши місцями А і В, дістанемо другий запис цієї теореми:

Приклад. На заводі 96% телевізорів визнаються придатними. У кожній партії з 100 придатних телевізорів у середньому 75 є першого сорту. Знайти ймовірність того, що телевізор, взятий з такої партії, є першого сорту.

Подія А - телевізор є придатним, подія В - телевізор є першого сорту. Шуканою величиною є Р(А ∩ В), оскільки для того, щоб телевізор був першого сорту, треба, щоб він одночасно був і придатним (подія А), і першого сорту (подія В). За умовою Р(A) = 0,96, Р(В/А) = 0,75. Отже,