Смекни!
smekni.com

Логарифмические уравнения (стр. 2 из 3)

2. Использование определения логарифма

Пример 1. Решить уравнения

a) log2(5 + 3log2(x - 3)) = 3, c) log(x - 2)9 = 2,
b)
d) log2x + 1(2x2 - 8x + 15) = 2.

Решение. a) Логарифмом положительного числа b по основанию a (a > 0, a ≠ 1) называется степень, в которую нужно возвести число a, чтобы получить b. Таким образом, logab = c, b = ac и, следовательно,

5 + 3log2(x - 3) = 23

или

3log2(x - 3) = 8 - 5, log2(x - 3) = 1.

Опять используя определение, получим

x - 3 = 21, x = 5.


Проверка полученного корня является неотъемлемой частью решения этого уравнения:

log2(5 + 3log2(5 - 3)) = log2(5 + 3log22) = log2(5 + 3) = log28 = 3.

Получим истинное равенство 3 = 3 и, следовательно, x = 5 есть решение исходного уравнения.

b) Аналогично примеру a), получим уравнение

откуда следует линейное уравнение x - 3 = 3(x + 3) с решением x = -6. Сделаем проверку и убедимся, что x = -6 является корнем исходного уравнения.

c) Аналогично примеру a), получим уравнение

(x - 2)2 = 9.

Возведя в квадрат, получим квадратное уравнение x2 - 4x - 5 = 0 с решениями x1 = -1 и x2 = 5. После проверки остается лишь x = 5.

d) Используя определение логарифма, получим уравнение

(2x2 - 8x + 15) = (2x + 1)2

или, после элементарных преобразований,

x2 + 6x-7 = 0,

откуда x1 = -7 и x2 = 1. После проверки остается x = 1.


3. Использование свойств логарифма

Пример 3. Решить уравнения

a) log3x + log3(x + 3) = log3(x + 24),
b) log4(x2 - 4x + 1) - log4(x2 - 6x + 5) = -1/2
c) log2x + log3x = 1

Решение. a) ОДЗ уравнения есть множество x  (0;+) которое определяется из системы неравенств (условия существования логарифмов уравнения)

x > 0,
x+3 > 0,
x+24 > 0.

Используя свойство P2 и утверждение 1, получим

log3x + log3(x + 3) = log3(x + 24) 
log3x(x + 3) = log3(x + 24),
x > 0,
x(x + 3) = x + 24,
x > 0,
x2 + 2x - 24 = 0,
x > 0,
x1 = -6,
x2 = 4,
x > 0,
x = 4.

b) Используя свойство P3, получим следствие исходного уравнения

откуда, используя определение логарифма, получим

или

x2 - 4x + 1 = 1/2(x2 - 6x + 5),

откуда получаем уравнение

x2 - 2x - 3 = 0

с решениями x1 = -1 и x = 3. После проверки остается лишь x = -1.

c) ОДЗ уравнения: x  (0;+). Используя свойство P5, получим уравнение

log2x(1 + log32) = 1,

откуда

или
или log2x = log63. Следовательно,

Логарифмические неравенства

Неравенство, содержащее неизвестное под знаком логарифма или в его основании называется логарифмическим неравенством. В процессе решения логарифмических неравенств часто используются следующие утверждения относительно равносильности неравенств и учитываются свойства монотонности логарифмической функции.

Утверждение 1. Если a > 1, то неравенство logaf(x) > logag(x) равносильно системе неравенств

f(x) > g(x),
g(x) > 0.

Утверждение 2. Если 0 < a < 1, то неравенство logaf(x) > logag(x) равносильно системе неравенств

f(x) < g(x),
f(x) > 0.

Утверждение 3. Неравенство logh(x)f(x) > logh(x)g(x) равносильно совокупности систем неравенств

h(x) > 1,
f(x) > g(x) > 0,
0 < h(x) < 1,
0 < f(x) < g(x).

Подчеркнем, что в неравенстве logaf(x) > logag(x) вместо знака > может фигурировать любой из знаков ≥ , < , ≤ . В этом случае утверждения 1-3 соответственно преобразуются.

Пример 1. Решить неравенства

a) log3(x2 - x) ≥ log3(x + 8);
b)
c)

Решение. a) Используя утверждение 1 , получим

log3(x2 - x) ≥ log3(x + 8)
x2 - xx + 8,
x2 - 2x - 8 ≥ 0,
x+8 > 0, x > -8,
x ≤ -2,
x ≥ 4, x
(-8;-2]
[4;+∞).
x > -8,

b) Основание логарифма число между нулем и единицей, поэтому, используя утверждение 2, получим

c) Запишем 0 = log21 и, используя утверждение 1, получим

Запишем

и, используя утверждение 2, получим


Показательные уравнения и неравенства

1. Показательные уравнения

Показательным называется уравнение, в котором неизвестное содержится только в показателе степени при постоянных основаниях.

Простейшим показательным уравнением является уравнение вида

Это уравнение равносильно алгебраическому уравнению

Пример 1. Решить уравнение

.

Представим правую часть уравнения в виде степени с основанием 2:

.

Перейдем теперь к равносильному алгебраическому уравнению:

Если после введения новой переменной
показательное уравнение сводится к алгебраическому, дробно-рациональному или другому уравнению от переменной y, то сначала находят корни этого уравнения, а потом выражают xчерез y, используя решение простейшего показательного уравнения.

2. Показательные неравенства

Показательными называются неравенства, в которых неизвестное содержится в показателе степени.