Смекни!
smekni.com

Три задачи по теории чисел (стр. 4 из 4)

где в правой части тождества 25 в обеих скобках слагаемые представляют собой слагаемые бинома Ньютона

(α + β)n, умноженных на ±cm, где m = 0,1,2,3…,

знак «+», если m-четное,

ki – биноминальные коэффициенты, где i= 3,4,5,…,

k1 = 1 - первые два биноминальных коэффициента при αn и αn-1β.

k2 = n

Глядя на уравнение (1) и тождество (25), определяем, что решением уравнения (1) an = b2 + cd2 являются:

a = α2 + cβ2

b = αn – k3n-2β2 + k5c2αn-4β4 – k7c3αn-6β6 +…

d = nαn-1β – k4n-3β3 + k6c2αn-5β5 – k8c3αn-7β7 +…, ч.т.д.

Утверждение. ( n>1-любое натуральное)

Уравнение an = b2 + cd2 (1), где c = const, имеет следующее решение:

a = α2 + cβ2

(2) b = αn – k3n-2β2 + k5c2αn-4β4 – k7c3αn-6β6 +…

d = nαn-1β – k4n-3β3 + k6c2αn-5β5 – k8c3αn-7β7 +…,

ki – биноминальные коэффициенты степени n,

где i = 3; 4; 5; 6; 7; 8…,

k1 = 1 первые два биноминальных

k2 = n коэффициента для степени n,

n – натуральная степень (n > 1)

Общее доказательство

(Метод математической индукции)

Итак, нами доказана справедливость найденного решения (2)

уравнения (1) для степеней n = 2; 3; 4; 5; 6; 7.

Предположим, что решение (2) справедливо и для степени n–1.

Тогда, обозначив биноминальные коэффициенты для этой степени ki/n-1, где i = 1; 2; 3…, (k1/n-1 = 1, k2/n-1 = n-1), можно записать тождество:

(3) (α2 +cβ2)n-1

n-1 – k3/n-1n-3β2 + k5/n-1c2αn-5β4 – k7/n-1c3αn-7β6 +…)2 +

(первая скобка)

+ c(k2/n-1αn-2β – ck4/n-1αn-4β3 + c2k6/n-1αn-6β5 – c3k8/n-1αn-8β7 + …)2

(вторая скобка)

⇒ (α2 + cβ2)n-1 ≡ (первая скобка)2 + c(вторая скобка)2 (3')

При нахождении решений уравнения (1) для частных случаев (n = 2; 3; 4; 5; 6; 7) мы использовали соотношение:

(4) an = (xu - cyυ)2 + c(xυ + yu)2,

где n = 2; 3;…7.

x = α

y = β

a = x2 + cy2 = α2 + cβ2

(5) b = xu – cyυ = αu – cβυ

d = xυ + yu = αυ + βu

где, в свою очередь

u = (первая скобка)

υ = (вторая скобка), для n = 2; 3; 4; 5; 6; 7 в соотношении (3) (или (3'))

Аналогично рассуждая, попробуем доказать справедливость теоремы для произвольной степени n, предположив, что она справедлива для степени n – 1

Это значит, что надо исследовать решение (5) уравнения (4) (или, что тоже, уравнения (1)) для произвольной степени n.

Итак, пусть для произвольной степени n


a = α2+ cβ2 (6)

b = αu – cβυ = α(первая скобка) – cβ(вторая скобка) =

= α(αn-1-k3/n-1n-3β2 + k5/n-1c2αn-5β4-k7/n-1c3αn-7β6+...)

- cβ(k2/n-1αn-2β – ck4/n-1αn-4β3 + c2k6/n-1αn-6β5

– c3k8/n-1αn-8β7 +…) =

= (αn – ck3/n-1αn-2β2+ c2k5/n-1αn-4β4 – c3k7/n-1αn-6β6+…) +

+ (-ck2/n-1αn-2β2 + c2k4/n-1αn-4β4 – c3k6/n-1αn-6β6 +

+ c4k8/n-1αn-8β8-…) =

= αn – c(k2/n-1 + k3/n-1n-2β2 + c2(k4/n-1 + k5/n-1) +

+ αn-4β4- c3(k6/n-1 + k7/n-1n-6β6 +…=

= αn- ck3αn-2β2 + c2k5αn-4β4-c3k7αn-6β6 +….

b = αn- ck3αn-2β2 + c2k5αn-4β4-c3k7αn-6β6 +… (7)

где (8) kί = kί-1/n-1 + kί/n-1 – биноминальные коэффициенты для степени n;

ί = 3;5;7;…;

k1 = 1 – первый биноминальный

коэффициент при αn в (7);

kί-1/n-1 и kί/n-1 – два биноминальных последовательных

коэффициента для степени n – 1.

Соотношение (8) - это одно из свойств биноминальных коэффициентов в «Треугольнике Паскаля»:

Каждый из биноминальных коэффициентов равен сумме двух биноминальных коэффициентов, стоящих над ним.


«Треугольник Паскаля»

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Теперь найдем выражение для d:

d = αυ + βu = α(вторая скобка) + β(первая скобка) =

= α(k2/n-1αn-2β – ck4/n-1αn-4β3 + c2k6/n-1αn-6β5

– c3k8/n-1αn-8β7 +…) +

+ β(αn-1-ck3/n-1n-3β2 + k5/n-1c2αn-5β4-k7/n-1c3αn-7β6+...) =

= k2/n-1αn-1β – ck4/n-1αn-3β3 + c2k6/n-1αn-5β5

– c3k8/n-1αn-7β7 +…+ αn-1β – ck3/n-1αn-3β3 + c2k5/n-1αn-5β5

– c3k7/n-1αn-7β7 +…=

= (1 + k2/n-1) αn-1β – c(k3/n-1 + k4/n-1) αn-3β3 + c2(k5/n-1 + k6/n-1) αn-5β5 – c3(k7/n-1 + k8/n-1) αn-7β7 +…=

= k2αn-1β – ck4αn-3β3 + c2k6αn-5β5 – c3k8αn-7β7 +….

d = k2αn-1β – ck4αn-3β3 + c2k6αn-5β5 – c3k8αn-7β7 +… (9),

где (8) kί = kί-1/n-1 + kί/n-1 - – биноминальные коэффициенты для степени n; (вышеупомянутое свойство

биноминальных коэффициентов(8));

ί = 2;4;6;8;…;

k2 = n - второй биноминальный

коэффициент для степени n;

kί-1/n-1 и kί/n-1 – два биноминальных последовательных коэффициента для степени n – 1.

Итак, учитывая (5), (6), (7), (9), уравнение (4) принимает вид:

an = b2 + cd2 (1), где

a = α2 + cβ2

b = αn – c k3αn-2β2 + c2k5αn-4β4 – c3k7αn-6β6 +…

d = nαn-1β – c k4αn-3β3 + c2k6αn-5β5 – c3k8αn-7β7 +…,

являются решениями уравнения (1) при c = const;

ki – биноминальный коэффициент степени n;

i = 3; 4; 5; 6; 7; 8…;

k1 = 1, k2 = n, n > 1 - натуральная степень.

Утверждение доказано.


Скворцов Александр Петрович, учитель, ветеран педагогического труда;

г. Колпашево Томской области, август 2009.

Первая задача рецензирована в 1996 г. доктором физико математических наук.

Все три задачи чуть позже рецензированы томским специалистом математиком Тимошенко Е. (к сожалению, ни имени, ни отчества его я не знаю), которого для этой цели по моей просьбе нашел ректор ТПУ Похолков Юрий Петрович, за что я им всем очень и очень благодарен.

Отзыв специалистов о моей работе неплохой. Вот выдержка из «Рецензии на работу Скворцова А.П. «Несколько задач, теорем и утверждений по теории чисел»» Тимошенко Е.: «В данной работе особый интерес представляют доказательства неразрешимости в рациональных ненулевых числах уравнения р1 + р2 = р3 , где р1* р2 * р3 = R3, где R – рациональное число (Задача 1. Автор), и неразрешимости в рациональных ненулевых числах системы

,
(Задача 2. Автор).

Автор указывает довольно широкое семейство решений уравнения an=b2+cd2 (1), зависящее от двух параметров

и
(Задача 3. Автор). Так, для уравнения (2) a3 = b2 + cd2 приводится решение а = α2 + cβ2 , b = α3 - 3cαβ2, d = 3α2β - cβ3 (3).

К сожалению, остается недоказанным, что это решение – общее, т.е. не ясно, любое ли решение уравнения (2) может быть представлено в виде (3). То же самое можно сказать и о решении уравнения (1). … ». К сожалению, этот вопрос для меня до сих пор остается открытым. Хотя, если мое мнение кого-то интересует, интуиция мне подсказывает, что найденное мною решение уравнения (1) - единственное. Однако я хорошо понимаю, что интуиция – это еще не факт.

Думаю, что специалистам данная Задача 3 и ее доказательство известны. Однако лично мне она на глаза не попадалась. В дальнейшем в одной из очередных работ результаты этой задачи мне очень пригодились.

Что касается первых двух задач, то они мне тоже нравятся, и, думаю, могут вызвать интерес не только у специалистов, но и у студентов и школьников на факультативных занятиях.

А.П. Скворцов.