Смекни!
smekni.com

Статистическое моделирование (стр. 4 из 5)

интервал доверия имеет вид (26.32; 28.68).

Теперь поставим вопрос иначе: сколько детей надо обследовать с тем, чтобы среднее число часов в неделю, проводимых ребенком у телевизора, отклонилось от его оценки не более чем на 0,5 ч. с вероятностью 0,95?

В такой постановке речь идет о нахождении числа n таким, чтобы выполнялось равенство

,

откуда

или n = (2sZ0.475)2.

В условиях примера n = (2×6×1,96)2 @ 553.

Разумеется, при больших значениях n ширина доверительного интервала уменьшится.

Заметим, что по сравнению с первоначальной задачей ширина интервала уменьшилась в 1,18/0,5 = 2,36 раз, количество необходимых испытаний увеличилось в (2,36)2 = 5,57 раз ( 553 отличается в третьем знаке от 100 × 5,57).

Пример 24.3. Построение доверительного интервала для математического ожидания нормальной генеральной совокупности при неизвестной дисперсии.

Снова рассмотрим генеральную совокупность x, распределенную нормально с параметрами (q,s2), однако теперь считаем дисперсию s2 неизвестной.

Обозначим

стандартное выборочное квадратичное отклонение

.

В курсах теории вероятностей доказывается, что случайная величина

подчиняется так называемому закону распределения Стьюдента с n - 1 степенью свободы и её плотность имеет вид

,

где Кn некоторая нормирующая константа.

Созданы таблицы , дающие возможность вычислять вероятности вида

(см. прил. 4).

Ввиду вышесказанного, получаем равенства:

,

из которых видно, что выбрав Z как корень уравнения

( обозначим этот корень

), приходим к доверительному интервалу для q вида

.

Пример 24.4. Рассмотрим вопрос о построении доверительного интервала для неизвестного количества времени в течение недели, проводимого ребенком у экрана телевизора, сохранив все данные примера 24.2, считая теперь, что 6ч. есть оценка выборочного среднеквадратического отклонения,

.

По таблице распределения Стьюдента (см. приложение 4) находим

, границы интервала будут

,

а сам интервал (25,92; 29,08).

Замечаем, что интервал стал шире, что объясняется уменьшением объема имеющейся информации из-за незнания ещё одного параметра генеральной совокупности.

6. Методы получения оценок

До сих пор мы считали, что оценка неизвестного параметра известна и занимались изучением ее свойств с целью использования их при построении доверительного интервала. В этом параграфе рассмотрим вопрос о способах построения оценок.

Методы правдоподобия

Пусть требуется оценить неизвестный параметр

, вообще говоря, векторный,
. При этом предполагается, что вид функции распределения известен с точностью до параметра
,

.

В таком случае все моменты случайной величины x становятся функциями от

:

.

Метод моментов требует выполнения следующих действий:

1. Вычисляем k «теоретических» моментов

.

2. По выборке

строим k одноименных выборочных моментов. В излагаемом контексте это будут моменты

3. Приравнивая «теоретические» и одноименные им выборочные моменты, приходим к системе уравнений относительно компонент оцениваемого параметра

(25.1)

4. Решая полученную систему (точно или приближенно), находим исходные оценки

. Они, конечно, являются функциями от выборочных значений
.

Мы изложили порядок действий, исходя из начальных - теоретических и выборочных - моментов. Он сохраняется при ином выборе моментов, начальных, центральных или абсолютных, который определяется удобством решения системы (25.1) или ей подобной.

Перейдем к рассмотрению примеров.

Пример 25.1. Пусть случайная величина x распределена равномерно на отрезке [ a ;b ] , где

- неизвестные параметры. По выборке (
) объема n из распределения случайной величины x. Требуется оценить a и b .

Решение.

В данном случае распределение определяется плотностью

1) Вычислим первые два начальных «теоретических» момента:

2) Вычислим по выборке два первых начальных выборочных момента

3) Составим систему уравнений

4) Из первого уравнения выразим a через b

и подставим во второе уравнение, в результате чего придём к квадратному уравнению

решая которое, находим два корня

.

Соответствующие значения a таковы

.

Поскольку по смыслу задачи должно выполнятся условие a < b , выбираем в качестве решения системы и оценок неизвестных параметров

.

Замечая, что

есть не что иное, как выборочная дисперсия
, получаем окончательно

.

Если бы мы выбрали в качестве «теоретических» моментов математическое ожидание и дисперсию,

, то пришли бы к системе (с учетом неравенства a < b)

которая линейна и решается проще предыдущей. Ответ, конечно, совпадает с уже полученным.

Наконец, отметим, что наши системы всегда имеет решение и при том единственное. Полученные оценки, конечно, состоятельны, однако свойствам несмещенности не обладают.

7. Метод максимального правдоподобия

Изучается, как и прежде, случайная величина x, распределение которой задается либо вероятностями её значений

, если x дискретна, либо плотностью распределения
, если x непрерывна, где
- неизвестный векторный параметр. Пусть (
) - выборка значений x. Естественно в качестве оценки
взять то значение параметра, при котором вероятность получения уже имеющейся выборки максимальна.

Выражение

называют функцией правдоподобия, она представляет собой совместное распределение или совместную плотность случайного вектора с n независимыми координатами, каждая из которых имеет то же распределение (плотность), что и x.