Смекни!
smekni.com

Операции на графах (стр. 3 из 5)


№ п.п.

Группы вершин с совпадаю­щими компонентами

Дуги для несовпада­­ю­щих компонент

Дуга

(xiyj)®(xkyl)

Дуга

(za,zb)

1

z1=(x1y1), z2=(x1y2), z3=(x1y3)

(y1,y1)

(y1,y2)

(y2,y3)

(y3,y1)

(x1y1)®(x1y1)

(x1y1)®(x1y2)

(x1y2)®(x1y3)

(x1y3)®(x1y1)

(z1,z1)

(z1,z2)

(z2,z3)

(z3,z1)

2

z4=(x2y1), z5=(x2y2), z6=(x2y3)

(y1,y1)

(y1,y2)

(y2,y3)

(y3,y1)

(x2y1)®(x2y1) (x2y1)®(x2y2) (x2y2)®(x2y3) (x2y3)®(x2y1)

(z4,z4)

(z4,z5)

(z5,z6)

(z6,z4)

3

z1=(x1y1), z4=(x2y1)

(x1,x2)

(x2,x1)

(x1y1)®(x2y1) (x2y1)®(x1y1)

(z1,z4)

(z4,z1)

4

z2=(x1y2), z5=(x2y2)

(x1,x2)

(x2,x1)

(x1y2)®(x2y2) (x1y2)®(x1y2)

(z2,z5)

(z5,z2)

5

Z3=(x1y3), z6=(x2y3)

(x1,x2)

(x2,x1)

(x1y3)®(x2y3) (x2y3)®(x1y3)

(z3,z6)

(z6,z3)

Граф G1´ G2изображен на рис. 4.

Операция декартова произведения обладает следующими свойствами.

1. G1´G2 = G2´G1

2. G1´(G2´G3) = (G1´G2)´G3.

Операция декартова произведения графов может быть выполнена в матричной форме.

Пусть G1(X,E1) и G2(Y,E2) – два графа, имеющие nx и ny вершин соответственно. Результирующий граф G1´G2 имеет nx×ny вершин, а его матрица смежности вершин - квадратная матрица размером (nx×ny)´ (nx ×ny). Обозначим через aab = a(ij)(kl) элемент матрицы смежности вершин, указывающий на наличие дуги (ребра), соединяющей вершину za=(xiyj) c zb=(xkyl). Согласно определению операции этот элемент может быть вычислен при помощи матриц смежности вершин исходных графов следующим образом:

aab = a(ij)(kl) = Kik×a2,jlÚ Kjl×a1,ik, (2)

где a1,ik, a2,jl – элементы матрицы смежности вершин графов G1 и G2 соответственно;

Kik – символ Кронекера, равный 1, если i=k, и нулю, если i¹k .

Пример 4. Выполнить операцию декартова произведения на графах, приведенных на рис. 4.

Составим матрицы смежности вершин исходных графов.

x1 x2 y1 y2 y3
x1 0 1 y1 1 1 0
A1 = x2 1 0 A2 = y2 0 0 1
y3 1 0 0

Для построения матрицы смежности результирующего графа воспользуемся соотношением (2). В этом соотношении первое слагаемое Kik×a2,jlуказывает на наличие дуг для вершин, у которых совпадают компоненты из множества X. Для пояснения сказанного, рассмотрим вспомогательную матрицу Axy, в которой элементы, для которых Kik = 1, помечены символом X. Эти элементы принимают значения, равные значениям соответствующих элементов матрицы A2смежности вершин графа G2, так, как это показано для матрицы A*.

x1y1 x1y2 x1y3 x2y1 x2y2 x2y3
x1y1
XÚY
X
X
Y 0 0
x1y2 X XÚY X 0 Y 0
Axy = X1y3 X X XÚY 0 0 Y
X2y1 Y 0 0
XÚY
X
X
X2y2 0 Y 0
X
XÚY
X
X2y3 0 0 Y
X
X
XÚY
x1y1 x1y2 x1y3 x2y1 x2y2 x2y3
x1y1
a1,11Ú a2,11
a2,12 a2,13 a1,12
x1y2 a2,21 a1,11Úa2,22 a2,11 a1,12
A* = x1y3 a2,31 A2,32 a1,11Úa2,33 0 0 a1,12
x2y1 a1,21 0 0 a1,22Úa2,11 a2,12 a2,13
x2y2 0 a1,21 0 a2,21 a1,22Úa2,22 a2,23
x2y3 0 0 a1,21 a2,31 a2,32 a1,22Ú a2,33

Второе слагаемое Kjl×a1,ikсоотношения (2) указывает на наличие дуг для групп вершин, у которых совпадают компоненты из множества Y. В матрице Axy элементы, для которых Kjl = 1 помечены символом Y. Эти элементы принимают значения, равные значениям соответствующих элементов матрицы A1смежности вершин графа G1, так, как это показано для матрицы A*.

Заметим, что в матрицах Axy и A* на главной диагонали располагаются элементы, равные логической сумме значений элементов матриц смежности вершин обоих графов. Это определяется тем, что на главной диагонали расположены элементы, для которых Kik = Kjl = 1.