Смекни!
smekni.com

Доказательства неравенств с помощью одномонотонных последовательностей (стр. 2 из 3)

Упражнение №1.

Пусть a и b – положительные вещественные числа.

Доказать неравенство

a3 +b3

a2b+b2a.

Доказательство.

Заметим, прежде всего, что

a3 +b3 =

, a2b+b2a =

А так как последовательности (a2, b2), (a, b) одномонотонны, то


А это значит, что a3 +b3

a2b+b2a.

Что и требовалось доказать.

Докажем это же неравенство, но другим способом.

Значит a3 +b3

a2b+b2a.

Что и требовалось доказать.

Мы не можем сказать какой из методов доказательства решения легче, так как в данном случае оба метода решения неравенства примерно одинаковые по сложности.

Упражнение №2.

Пусть a и b – положительные вещественные числа.

Доказать неравенство.

а2+b2.

Доказательство.

Заметим, прежде всего, что


а2+b2 =

,
,

А так как последовательности (

), (
) одномонотонны, то

.

Что и требовалось доказать.

2.3 Случай с двумя последовательностями из трех переменных

Рассмотрим последовательность (а123) и (b 1, b2,b3), и запишем в виде таблицы

Если последовательность (а123)

(b1, b2 ,b3) записанных в виде таблицы, где наибольшее из чисел а123 находиться над наибольшим из чисел b 1,b2,b3, а второе по величине а123 находиться над вторым по величине из чисел b 1,b2,b3 , и где наименьшее из чисел а123 находиться над наименьшим из чисел b 1,b2,b3 то последовательность одномонотонная.

Если

=a1b1, и
1b12b2, то
1b12b2+a3b3

Для доказательства следующих теорем нам понадобится одно свойство одномонотонных последовательностей, которое оформим в виде леммы.

Лемма. Если (а1, а2, …аn) и (b 1, b2,…bn) одномонотонные последовательности, то их произведение не изменится при перестановки местами столбцов.

Доказательство.

Рассмотрим последовательность с двумя переменными из двух переменных.

1b12b2.

Заметим, что а1b12b2 = а2b2+ а1b1 по переместительному свойству сложения. Значит, в самой таблице мы тоже можем переставлять столбцы переменных, при этом сохраняется одномонотонность последовательности. То есть

=

Теперь рассмотрим последовательность с двумя последовательностями из трех переменных.

1b12b2+a3b3.

Кроме того, что мы можем поменять переменные по переместительному свойству, а по сочетательному свойству мы можем объединять некоторые слагаемые, сохраняя одномонотонность последовательности. То есть

а1b12b2+a3b3= (a3b32b2)+ а1b1 =

Лемма доказана

Теорема 2. Пусть (а1 а2 а3), (b1 b2 b3) – одномонотонные последовательности и (

)(здесь и в дальнейшем) любая перестановка чисел b1 b2 b3. Тогда

.

Доказательство.

Действительно, если последовательность

отличается от (b1 b2 b3) то найдется пара чисел k, l (1
k<l
3) такая, что последовательности (ak, al) и (bk, bl) не одномонотонны. Значит, поменяв местами числа
и
, мы увеличим всю сумму, а значит и всю сумму
. То есть

, так как
.

Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.

Теорема доказана

Упражнения

Данные ниже упражнения мы решим с помощью Теоремы 2

Упражнение №1.

Пусть a и b и c – положительные вещественныечисла.

Докажите неравенство.

a3+b3+c3

a2b+b2c+c2a.

Доказательство.

Заметим, прежде всего, что

a3+b3+c3=

, a2b+b2c+c2a =

А так как последовательности (a2, b2, c2), (a, b , c) одномонотонны, то

.

А это значит, что a3+b3+c3

a2b+b2c+c2a.

Что и требовалось доказать.

Упражнение №2.

Пусть a и b и c – положительные вещественныечисла.

Докажите неравенство.

.

Доказательство.


Заметим, прежде всего, что

и (a, b, c) и (

) одномонотонные последовательности, то

,

.

Складывая эти неравенства, мы получаем

.

Отделим дроби с одинаковым знаменателем в правой части

.

Вычислив, получаем

.

А это значит, что

Что и требовалось доказать

2.4 Случай с двумя последовательностями из n переменных

Рассмотрим одномонотонные последовательность (а1, а2, …аn) и (b 1, b2,…bn)

Если

=a1b1, и
1b12b2, то
1b12b2…anbn