Смекни!
smekni.com

Элементы тензороного исчисления (стр. 4 из 7)

§6. Поднятие и опускание индексов

Предположим, что X - это тензор типа (r,s). Давайте выберем его α-тый нижний индекс:

Символы, используемые для других индексов, несущественны. Поэтому, мы обозначили их точками. Затем рассмотрим тензорное произведение

(6.1)

Здесь g - дуальный метрический тензор с элементами

. На следующем шаге свернем (6.1) по паре индексов k и q. Для этой цели мы заменяем их на s и проводим суммирование:

(6.2)

В целом вся операция (6.2) называется поднятием индекса. Эта операция обратима. Обратная операция называется опусканием индексов:

(6.3)

Подобно (6.2), операция опускания индекса (6.3) включает в себя две операции над тензорами: тензорное произведение и свертку.

§7.Тензоры в криволинейных координатах

Мы будем рассматривать область

аффинного пространства, отнесенную к криволинейным координатам
. Радиус-вектор х произвольной точки М области
, отсчитываемый от фиксированной точки О, будет выражаться функцией

(7.1)

достаточное число раз непрерывно дифференцируемой. В дальнейшем мы предполагаем, что все рассматриваемые точки принадлежат области

.

Для ориентации в строении данной координатной системы весьма полезны координатные линии. Так мы будем называть кривые, вдоль которых меняется лишь одна из координат

а остальные остаются постоянными. Рассмотрим, например, координатную линию
. Это значит, что
закреплены на постоянных значениях, так что радиус-вектор х(7.1) остается функцией одного лишь
;мы получаем кривую, отнесенную к параметру
.

Через каждую точку М пройдет одна и только одна координатная линия

, именно, если
закрепить на значениях, которые они имеют в точке М.Частная производная
дает касательный вектор к координатной линии
. Все сказанное справедливо и для любых координатных линий, так что через каждую точку М проходят п координатных линий с касательными векторами
. Эти векторы мы будем обозначать кратко

(7.2)

Они, как мы знаем, всегда линейно независимы, ипотому в каждой точке М могут быть приняты за векторы аффинного репера

Таким образом, задание криволинейных координат в области
влечет появление в каждой ее точке М вполне определенного аффинного репера
Этот аффинный репер мы будем называть локальным репером в точке М.

Когда в качестве частного случая криволинейных координат мы берем аффинные координаты, функция (7.1) принимает вид:


(7.3)

илокальный репер в каждой точке М имеет те же векторы, что и основной репер, на котором построена данная аффинная координатная система.

Для рассмотрения локальных реперов имеются глубокие основания. Именно вспомним те простые свойства, которыми обладали аффинные координаты точек: приращения этих координат при переходе из точки

в точку
выражали координаты вектора смещения
:

поскольку

(говоря о координатах вектора, мы всегда будем иметь в виду его аффинные координаты; криволинейные координаты для векторов не имеют смысла). В этом, можно сказать, и состояла сущность аффинных координат точек.

Для криволинейных координат

эти простые свойства теряются. Однако мы находим их снова, если рассматривать криволинейные координаты в бесконечно малой окрестности данной точки М.

Смещаясь из точки

в бесконечно близкую точку
,мы находим вектор смещения
, как приращение радиуса вектора хточки М:

Пренебрегая бесконечно малыми высшего порядка, заменяем приращение полным дифференциалом и получаем:

(7.4)

Это значит, что вектор смещения

в локальном репере
имеет координа-ты, равные приблизительно приращениям
.

Итак, для бесконечно малых смещений из точки М приращения криволинейных координат

снова выражают координаты вектора смещения
, если эти последние вычислять в локальном репере в точке М, пренебрегая бесконечно малыми высшего порядка.

Таким образом, при помощи локального репера криволинейным координатам возвращаются свойства аффинных координат, правда, теперь уже лишь в бесконечно малой окрестности данной точки.

Можно сказать также, что приращения

криволинейных координат в бесконечно малой окрестности точки М совпадают с точностью 1-го порядка с аффинными координатами относительно локального репера, построенного в точке М.

Естественно, что, занимаясь геометрией аффинного пространства в криволинейных координатах, мы постоянно будем сталкиваться с локальными реперами.

Выясним теперь, что происходит с локальными реперами, когда криволинейные координаты подвергаются преобразованию

(7.5)

которое предполагается однозначно обратимым и непрерывно дифференцируемым в обе стороны. Выражая, обратно,


(7.6)

мы можем считать в уравнении (7.1) радиус-вектор хсложной функцией от

. Частная производная по
выразится тогда по известной формуле:

В правой части по i, конечно, происходит суммирование. Заметим, что мы будем без стеснения прилагать обычные формулы дифференцирования к выражениям, содержащим векторы, так как справедливость этих формул устанавливается тривиальным образом: достаточно свести дифференцирование векторов к дифференцированию их координат. Окончательно получаем:

(7.7)

Итак, преобразование криволинейных координат влечет за собой преобразование локального репера в каждой точке М, причем векторы нового локального репера разлагаются по векторам старого с коэффициентами

.Сравнивая с нашей прежней записью преобразования аффинного репера

мы видим, что (7.7) представляет собой ее частный случай, когда


(7.8)