Смекни!
smekni.com

Нестандартный анализ (стр. 3 из 7)

Более изощренное определение бесконечной малости числа e > 0, которое мы будем использовать в дальней­шем, таково. Будем складывать число e с самим собой, получая числа e, e + e, e + e+ e, e + e + e +e и т. д. Ес­ли все полученные числа окажутся меньше 1, то число e и будет называться бесконечно малым. Другими слова­ми, если e бесконечно мало, то сколько раз ни отклады­вай отрезок длины e вдоль отрезка длины 1, до конца не дойдешь. Наше требование к бесконечно мало­му e можно переписать и в такой форме (поделив на e): 1<1/e, 1+1<1/e, 1+1+1<1/e,…

Таким образом, если число число e бесконечно мало, то число 1/e бесконечно велико в том смысле, что оно больше любого из чисел 1, 1+1, 1+1+1, 1+1+1+1 и т. д. Так что если мы начнем измерять отрезок длиной 1/e с помощью эталона длины (т.е. откладывая последовательно отрезки единичной длины), то процесса измерения никогда не закончим.

Из вышеизложенного следует, что существование бесконечно малых противоречит так называемой аксиоме Архимеда, которая утверждает, что для любых двух отрезков А и В можно отложить меньший из них (А) столько раз, чтобы в сумме полу­чить отрезок, превосходящий по длине больший отрезок (В).

Приведенная формулировка касается отрезков; если считать (как это обычно делается), что длины отрезков являются числами, мы приходим к такой формулировке аксиомы Архимеда: для любых двух чисел а и b, для ко­торых 0 < а < b, одно из неравенств а + а > b, a + а + a > b, ... обязательно выполнено. В дальнейшем, говоря об аксиоме Архимеда, мы будем иметь в виду имен­но эту формулировку. Из нее видно, что в множестве действительных чисел (где эта аксиома выполняется) бесконечно малых нет: чтобы убедиться в этом, достаточ­но положить a=e, b=1. Мы увидим в дальнейшем, что на самом деле аксиома Архимеда равносильна утвержде­нию об отсутствии бесконечно малых элементов, не рав­ных нулю.

Вывод – если мы хотим рассматривать бесконечно малые, нужно расширить множество R действительных чисел до некоторого больше­го множества *R. Элементы этого нового множества бу­дем называть гипердействительными числами. В нем аксиома Архимеда не выполняется и существуют беско­нечно малые (в смысле последнего определения) числа — такие, что сколько их ни складывай с собой, сумма будет все время оставаться меньше 1. Подобно тому как обыч­ный (или стандартный) математический анализ зани­мается изучением множества действительных чисел R, нестандартный анализ изучает множество гипердействи-тельных чисел *R. Полученные при этом результаты ис­пользуются для исследования свойств R. (Таким обра­зом могут быть получены “нестандартные” доказательст­ва свойств обыкновенных действительных чисел.)

Порядок на R архимедов, а на *R неархимедов: это значит, что в R аксиома Архимеда выполняется, а в *R не выполняется. По этой причине стандартный (обыч­ный) анализ, изучающий R, называется еще архимедо­вым, а нестандартный анализ, изучающий *R, называ­ют неархимедовым.

Для построения нестандартного анализа необхо­димо расширить множество действительных чисел до бо­лее широкого множества гипердействительных чисел.

Но прежде поговорим о самих действительных числах и их происхождении.

До сих пор мы предполагали известным по­нятие действительного числа. Понятие действительного числа имеет долгую историю, начавшуюся еще в древней Греции (о чем на­поминает название “аксиома Архимеда”) и закончившу­юся лишь вXIX веке. Самой первоначальной и основной числовой системой является, конечно, система натуральных чисел. Натуральных чисел, однако, оказывается мало: пы­таясь решить уравнение 3 + х = 2 в натуральных чис­лах, мы обнаруживаем, что оно не имеет решений и на­ше желание определить операцию вычитания оказывается неудовлетворенным. Поэтому мы расширяем множе­ство натуральных чисел до множества целых чисел. В этой процедуре для нас сейчас важно следующее: каким образом мы оп­ределим сложение и умножение на целых числах? То, что 2 + 2 == 4, можно увидеть, сложив две кучи по два яблока в одну. Но почему мы считаем, что (-2)+(-2)=(-4)? Почему мы считаем, что (-1)(-1)=1?

Эти вопросы не так тривиальны, как может показаться. Найти правильный ответ будет легче, если сформулировать вопрос иначе: что плохого произой­дет, если мы будем считать, например, что (-1)(-1)=(-1)? Ответ прост: в этом случае хорошо известные свой­ства сложения и умножения натуральных чисел (комму­тативность, ассоциативность и др.) не будут выполнять­ся для целых чисел. Можно показать, что обычное определение операций над отрицательными числами единственно возможное, если мы хотим сохранить привычные свойства операций сложения и умножения.

Тут следует остановиться: какие же именно свойства сложения и умножения мы хотим сохранить? Ведь если бы мы хотели сохранить все свойства, то введение отрицательных чисел было бы не только излишне, но и вредно: свойство “уравнение х+3=2 не имеет решений”, верное для натуральных чисел, становится неверным для целых! Если же мы ничего не хотим сохра­нить, то задача становится столь же легкой, сколь и пустой: можно определить операции с отрицательными числами как угодно.

Возвращаясь к истории развития понятия числа, мы видим, что введение отрицательных чисел не доставляет полного удовлетворения: уравнение 2x=3 по-прежне­му не имеет решения. Это побуждает ввести рациональ­ные (дробные) числа. Но и этого недостаточно: от раци­ональных чисел приходится перейти к действительным. В результате получается последовательность множеств NÌZÌQÌR (натуральных, целых, рациональных и действительных чисел; АÌВ означает, что всякий элемент множества А принадлежит множеству B. В этой последовательности каждое следующее множество вклю­чает в себя предыдущее, при этом имевшиеся в предыду­щем операции продолжаются на следующее, более широкое, множество, сохраняя свои полезные свойства.

Мы хотим продолжить эту последовательность еще на одни член, получив последовательность NÌZÌQÌRÌ*R, где *R – множество гипердействительных чисел. Новый шаг расширения будет иметь много общего с предыдущими: мы продолжим на *R имеющиеся в R операции, сохранив их полезные свойства. Но будут и 2 важных отличия.

Во-первых, если расширение (переход от Rк *R) можно выполнить многими различными способами: можно построить существенноразличные множества *R, ни одно из которых ничем не выделяется среди остальных. В то жо время, все предыдущие шаги нашего расширения число­вой системы от N к R были в некотором смысле од­нозначны.

Во-вторых, есть различие в наших целях. Ес­ли прежде (двигаясь от N к R) мы строили новую числовую систему прежде всего для того, чтобы иссле­довать ее свойства и ее применения, то построенная си­стема *R предназначается не столько для того, чтобы исследовать ее свойства, сколько для того, чтобы с ее помощью исследовать свойства R. Впрочем различие и не так велико: и раньше расширение числовой системы было одним из способов получения но­вых знаний о старых объектах. Кроме того, множество *R можно рас­сматривать, быть может, как соответствующее физиче­ской реальности в не меньшей (и даже в большей) сте­пени, чем R.

Итак, необ­ходимо расширить множество R действительных чисел до большего множества *R, содержащего бесконечно ма­лые, сохранив при этом все полезные свойства R. Цент­ральный вопрос состоит в том, какие именно свойства действительных чисел мы желаем со­хранить. Ответим на этот вопрос не сразу, начав с на­иболее простых свойств действительных чисел.

Прежде всего, мы хотим, чтобы гипердействительные числа можно было складывать, умножать, вычитать и делить, чтобы эти операции обладали обычными свойст­вами, называемыми «аксиомами поля». Сформулируем их.

Среди гипердействительных чисел должны быть выделены числа 0 и 1; определены операции сложения, умножения взятия противоположного, а также операция взятия обратного. При этом должны выполняться такие свойства:

(1) a+b=b+a (2) a+(b+c)=(a+b)+c (3) a+0=a (4) a+(-a)=0 (5) ab=ba

(6) a(bc)=(ab)c (7) a*1=a (8) a(b+c)=ab+ac (9) a*(1/a)=1 при a<>0.

Множество с операциями, обладающими этими свойствами, называется полем. Требования (1)-(9) можно сформулировать так: *R должно быть полем.

Кромеарифметических операций, зададим на гипердействительных числах порядок. Для любых двух различных гипердействительных чисел должно быть определено какое из них больше. При этои должны выполняться такие свойства:

(10) если a>b, b>c, то a>c

(11) если a>b, то a+c>b+cдля любого с

(12) если a>b, c>0, то ac>bc

если a>b, c<0, то ac<bc

Поле, в котором введен порядок с такими свойствами, называется упорядоченным полем. Требования (10)-(12) можно сформулировать так: *R должно быть упорядоченным полем.

Мы хотим, чтобы среди гипердействиетльных чисел были все действительные. При этом операции и порядок на R и на *R должны быть соглсованы. Это требование можно сформулировать так: упорядоченное поле *R должно быть расширением упорядоченного поля R.

Что же нового мы ожидаем от *R? Бесконечно малых.

Определение. Элемент e>=0 упорядоченного поля называется бесконечно малым, если e<1, e+e<1. e+e+e<1 и т.д. Отрицательное e называется бесконечно малым, если –e бесконечно мало.

Существование ненулевых бесконечно малх равносильно нарушению аксиомы Архимеда для гипердействительных чисел. Упорядоченные поля, в которых справедлива аксиома Архимеда и нет бесконечно малых, называют архимедово упорядоченными. Те поля, в которых аксиома Архимеда невернаи есть бесконечно малые, называют неархимедово упорядоченными (неархимедовым).

В этих терминах треюования можно сформулировать так: система гипердействительных чисел должна быть неархимедово упорядоченным полем, являющимся расширением упорядоченного поля действительных чисел.