Смекни!
smekni.com

Общее понятие определённого интеграла, его геометрический и механический смысл (стр. 2 из 3)

и слагаемые интегральной суммы выразятся в виде

где i – номер элементарного отрезка и принимает значения от 1 до n.

3). Интегральная сумма выразится в виде

(здесь применена формула n членов арифметической прогрессии).

4). Находим предел этой суммы при n → ∞:


Таким образом, искомая площадь равна 1/2 кв.ед. Проведенное вычисление, явно невыгодное из-за своей громоздкости, знакомит с операцией, составляющей сущность определенного интеграла.

Пример 2.

Вычислить площадь, ограниченную параболой y=x2, осью Ox и прямой x=1.

Решение.

1). Разбивая отрезок интегрирования [0, 1] на n равных частей, получим такие же абсциссы точек деления, как в примере 1.

2). В каждом из частичных отрезков выберем снова правые концы:

Так как f(x) = x2, то

и слагаемые интегральной суммы выразятся в виде

3). Интегральная сумма


Помещенная в скобках сумма квадратов первых n чисел натурального ряда может быть преобразована по формуле, доказываемой в элементарной алгебре:

Отсюда

4). Переход к пределу интегральной суммы при n → ∞ дает S = 1/3. Таким образом, искомая площадь равна 1/3 кв.ед.

Выполненное в этих двух примерах непосредственное вычисление определенных интегралов как пределов интегральных сумм

и

оказалось возможным только благодаря простой структуре операции суммирования, да и то оно потребовало проведения сложных подсчетов. Надо отметить, что такие приемы вычисления (здесь применен способ Архимеда) существовали до появления понятия интеграла.

Поэтому естественным развитием понятия определенного интеграла является выбор целесообразного способа его вычисления. Такой способ, оказывается, дает операция интегрирования ввиду наличия связи между определенным интегралом и интегралом неопределенным.


Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница

Рассмотрим криволинейную трапецию (рис. 2), у которой правая граничная прямая не зафиксирована. Площадь этой трапеции измеряется переменной величиной, зависящей от положения ее правой границы х. Пусть это будет некоторая функция Φ(х). Тогда справедлива следующая теорема.


Рис. 2

Теорема. Функция Φ(х), выражающая площадь переменной криволинейной трапеции (с подвижной правой стороной), является первообразной для функции y = f(х), графиком которой является кривая, ограничивающая эту же трапецию сверху.

По смыслу определения первообразной запись

Φ(х) = ∫f(х)dx

будет оправдана, если мы докажем, что

Φ'(х) = f(х).


Доказательство. Дадим начальному значению х приращение Δх. Тогда функция, выражающая площадь криволинейной трапеции, получит приращение

ΔΦ(х) = пл. хММ1х1,.

Это приращение площади (рис. 2) больше площади прямоугольника хМNх1, равной f(х)Δх, и меньше площади прямоугольника xN1M1x1, равной

f(х+ Δх)Δх, т.е. f(х)Δх < ΔΦ(х) < f(х+ Δх)Δх.

Деление всех членов неравенств на Δх > 0 дает

f(х) <

< f(х+ Δх).

Если теперь ввести условие Δх → 0, то в силу непрерывности функции

у= f(х)

Таким образом, отношение

заключено между двумя переменными, имеющими общий предел при Δх → 0. Но из этого следует,

что

,

т.е. Φ'(х) = f(х).

Этим доказано, что функция Φ(х), выражающая площадь криволинейной трапеции, является первообразной для f(х).

Выражение этой функции возможно в двоякой форме.

Исходя из того, что рассмотренная ранее задача о площади криволинейной трапеции (с фиксированными границами) получает свое разрешение с помощью определенного интеграла, можно записать

пл. aABb =

Вместе с тем эта же площадь может быть выражена как частное значение функции Φ(х) при x = b, и тогда

Φ(b) =

(1)

Аналогично площадь криволинейной трапеции (рис. 2) с переменной правой границей х выражается в виде

Φ(х) =

(2)

Этот интеграл оказывается функцией от верхнего предела.

С другой стороны, если Φ(х), выражающая площадь aAMx, является первообразной для функции f(х), то можно представить ее в виде Φ(х)=F(х)+C, где F(х) – некоторая первообразная для той же функции.

Приравнивая первые части равенств (1) и (2), получаем

= F(х) + C.

Для определения постоянной С используем то, что при х = а трапеция превращается в отрезок, и ее площадь оказывается равной нулю, т.е.

Φ(а) = F(а) + C = 0,

а отсюда С = − F(а) и, следовательно,

Φ(х) =

= F(х) − F(а).

Давая аргументу х значение фиксированного верхнего предела, т.е. при x = b, мы получаем выражение определенного интеграла через значения первообразной в виде следующей формулы:


Это – формула Ньютона-Лейбница. Она связывает определенный интеграл с неопределенным.

Для вычисления определенного интеграла эта формула обычно записывается в виде


где знак

служит символическим обозначением разности между значениями первообразной функции F(b) и F(а).

Пример 1.


Пример 2.

Пример 3.

Таким образом, формула Ньютона-Лейбница используется для вычисления определенного интеграла так:

1). Находится первообразная для данной подынтегральной функции.

2). Вычисляются частные значения первообразной подстановкой значений x = a и x = b, где b – верхний и a – нижний пределы интегрирования.

3). Определяется разность частных значений первообразной F(b) – F(а).

Свойства определенного интеграла

Доопределим понятие определенного интеграла при a ≥ b следующими равенствами:


Сформулируем некоторые свойства определенного интеграла в предположении, что подынтегральная функция ограничена на отрезке, по которому она интегрируется.

1). Если функция интегрируема на [a; b], то она интегрируема на

любом отрезке [x1; x2]

[a; b].

2). Для любых a, b и c

3). Интеграл обладает свойством линейности: для любых функций f(x) и g(x) и любой постоянной A

4). Если f(x) и g(x) интегрируемы на [a; b], то f(x) · g(x) также интегрируема на этом отрезке.

5). Если f(x) – периодическая функция с периодом T, то для любого a

Для определенных интегралов верны также следующие оценки (предполагается, что функции f и g интегрируемы на [a; b]).

1). Если f(x) ≥ g(x), то


2). В частности, если f(x) ≥ 0, то

3). Если f(x) ≥ 0 для любого х

[a; b] и существует х0
[a; b] такое, что f(x0)>0, причем f(x) непрерывна в х0 то

4). |f(x)| интегрируема на [a; b], причем