Смекни!
smekni.com

Элементы теории вероятностей. Случайные события (стр. 3 из 3)

.

в) Пусть событие С состоит в том, что все выбранные изделия бракованные. Количество возможных способов взять 3 изделия из 25-ти равно

= 2300, а количество возможных способов взять 3 бракованные изделия из 6-ти бракованных равно
= 20. Тогда по классическому определению вероятность события С равна

.

Задача 14.

В условиях задачи 13 найти наивероятнейшее число удачных опытов и вероятность его появления. (Задача 11. Вероятность получения удачного результата при проведении сложного химического опыта равна 3/4. Найти вероятность шести удачных результатов в 10-ти опытах).

Решение:

Число m0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n·pqm0n·p + p

По условию задачи 11 вероятность проведения удачного опыта равна p = 3/4, значит вероятность неудачного опыта равна q = 1/4. Количество опытов равно п = 10. Составим неравенство

7,25 ≤m0≤8,25 Þm0 = 8

Наивероятнейшее число удачных опытов равно 8. Поскольку количество испытаний невелико (n = 10), то для нахождения вероятности того, что событие А появится точно k = 8 раз воспользуемся формулой Бернулли:

, где q = 1 – p

=
» 0,282.

Задача 15Б.

В белом ящике 12 красных и 6 синих шаров. В черном – 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Решение:

Возможны две гипотезы:

Н1 – при бросании кубика выпадет количество очков, кратное 3, т.е. или 3 или 6;

Н2 – при бросании кубика выпадет другое количество очков, т.е. или 1 или 2 или 4 или 5.

По классическому определению вероятности гипотез равны:

Р(Н1) = 2/6 = 1/3; Р(Н2) = 4/6 = 2/3.

Поскольку гипотезы составляют полную группу событий, то должно выполняться равенство

Р(Н1) + Р(Н2) = 1/3 + 2/3 = 1

Пусть событие А состоит в появлении красного шара. Условные вероятности этого события зависят от того, какая именно гипотеза реализовалась, и составляют соответственно:

Р(А|Н1) =

; Р(А|Н2) =
.

Тогда по формуле полной вероятности

Р(А) = Р(Н1)·Р(А|Н1) + Р(Н2)·Р(А|Н2) +…+ Р(Нn)·Р(А|Нn)

вероятность события А будет равна:

Р(А) =

= 0,62

Задача 16Б.

Вероятность появления события А по крайней мере один раз в 5-ти независимых испытаниях равна 0,9. Какова вероятность появления события А в одном испытании, если при каждом испытании она одинаковая?

Решение:

Воспользуемся формулой для вероятности появления хотя бы одного события

Р(А) = 1 – qn

По условию задачи Р(А) = 0,9 и n = 5. Составим уравнение

0,9 = 1 – q5

q5 = 1 – 0,9 = 0,1

= 0,63 – вероятность Не появления события А в одном испытании, тогда

р = 1 – q = 1 – 0,63 = 0,37 – вероятность появления события А в одном испытании.

Задача 17Б.

Из каждых 40-ка изделий, изготовленных станком-автоматом 4 бракованных. Наугад взяли 400 изделий. Найти вероятность того, что среди них 350 без дефекта.

Решение:

Поскольку количество испытаний велико (n = 400) то для нахождения вероятности того, что событие А появится ровно k = 350 раз воспользуемся локальной теоремой Лапласа:

и j(х) – диф. функция Лапласа –Гаусса

По условию задачи вероятность бракованного изделия равна q = 4/40 = 0,1, Значит вероятность изделия без дефекта равна р = 1 – q = 1 – 0,1 = 0,9.

Определим аргумент функции Лапласа-Гаусса х:

.

Учитывая что функция j(х) является четной, т.е. j(–х) = j(х) по таблице значений функции Гаусса определяем, что j(–1,67) = 0,0989. Теперь

» 0,016.

Задача 18Б.

Вероятность присутствия студента на лекции равна 0,8. Найти вероятность того, что из 100 студентов на лекции будут присутствовать не меньше 75 и не больше 90.

Решение:

Поскольку количество испытаний велико (n = 100), то для нахождения вероятности того, что событие А появится от 75 до 90 раз воспользуемся интегральной теоремой Лапласа:

и Ф(х) – интегральная функция Лапласа

Определим аргументы интегральной функции Лапласа х1 и х2:

= –1,25;

= 2,5.

Учитывая что функция Ф(х) является Нечетной, т.е. Ф(–х) = – Ф(х) по таблице значений интегральной функции Лапласа находим:

Ф(–1,25) = – Ф(1,25) = –0,39435 и Ф(2,5) = 0,49379, тогда

Р100(75 £k£ 90) = Ф(х2) – Ф(х1) = Ф(2,5) – Ф(–1,25) = 0,49379 +0,39435 = 0,888.

Задача 19Б.

Сколько раз необходимо кинуть игральный кубик, чтобы нивероятнейшее число появления тройки равнялось 55?

Решение:

Число m0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n·pqm0n·p + p

По условию задачи т0 = 55, вероятность появления тройки равна p = 1/6, значит вероятность НЕ появления тройки равна q = 5/6. Составим неравенство

получили линейную систему неравенств

п – 5 ≤330 п ≤335

п + 1 ≥ 330 п ≥ 329

Таким образом получили, что игральный кубик необходимо кинуть от 329 до 335 раз.

действие событие величина

Задача 20Б.

Ткач обслуживает 1000 веретен. Вероятность обрыва нитки на одном из веретен в течении одной минуты равна 0,005. Найти вероятность того, что в течении одно минуты обрыв произойдет на 7 веретенах.

Решение:

Поскольку количество испытаний велико (n = 1000), а вероятность отдельного испытания очень мала (р = 0,005) то для вычисления искомой вероятности воспользуемся формулой Пуассона:

Параметр распределения l = 1000 ×0,005 = 5, тогда искомая вероятность равна

Р1000(7) =

= 0,1044.