Смекни!
smekni.com

Практическое применение интерполирования гладких функций (стр. 3 из 3)

Если взять в произвольной форме fÎC{m;0}, удовлетворяющее условию (12), то существует «обобщенный» интерполяционный полином и он единственен.

Доказательство:

Найдем интерполяционный полином в стандартном виде:


(13)

Затем, учитывая (13) для того, чтобы найти коэффициенты

(
), приходим к следующей алгебраической системе:

(14)

Эту систему упорядочим в матрицу S, являющуюся прямой суммой двух квадратных матриц размерностью m и n+1.

Здесь

Значит, основываясь на фактах линейной алгебры, определяем

Что и требовалось доказать.

Сейчас поставим перед собой цель записать многочлен G(x) в явном виде. Будет полезно рассмотреть стандартный вид многочлена Лагранжа. Из (13) видно, что

Поэтому имеет место следующее:

(14)

Возьмем параметры из (13):

(15)

Таким образом, из (13), (14), (15) следует, что

(16)

Замечание 3:

Если m=0, C{0;0}

C[-1;1],
(
). Значит, рассмотрев функцию
в задаче (11) приводится к обычной интерполяционной задаче, а многочлен Лагранжа (16) превращается в обычный интерполяционный многочлен. Таким образом, задача (11), действительно, в значении одного определения становится обобщенной задачей интерполирования.

Сейчас поговорим о погрешности обобщенной интерполяции.

В этом случае

нужно дать оценку побольше. Выше приведены размышления и следствия, полученные в целях определения одной системы функций.

.

Теорема 3.

Если

Здесь

Доказательство:

Приняв во внимание (16) получаем

(17)

Следующие приведения к формуле теоремы легко доказываются из (17) и теоремы 1.

Следствие 2.

Пусть

В это время:


2.2 Важное представление гладкой функции

Теорема 4.

Верна следующая связь:

(18)

Вдобавок

(19)

Доказательство:

Пусть

. По (19) получим
в последовательной форме используем метод интегрирования по частям, и изменяем его:

Отсюда выходит следующее неравенство:


(20)

называют формулой Тейлора с остаточным членом в интегральной форме.

Возьмем некоторую функцию
, чтобы равенство (18) было правильным
. При рассмотрении второго слагаемого полинома, достаточно показать что
Î С(m).

При изучении производной

полезно использовать дифференцирование интеграла, зависящего от параметра. Эта формула в математическом анализе очень известна и определяет следующее:

(21)

здесь

вдобавок

Таким образом, находим в нашем случае необходимый вид:

Значит

.

Замечание 6.

Рассмотрев, оператор

из последнего размышления вытекает полезное рассуждение:

(22)

Заключение

Мы убедились, что в вычислительной математике существенную роль играет интерполяция функций, значения которой совпадают со значениями заданной функции в некотором числе точек.

В данной курсовой работе рассматривается интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке, определили понятие погрешности интерполяции.

У нас возникла задача о восстановлении непрерывной функции по ее табличным значениям, поэтому в данной работе были приведены конкретные примеры по построению интерполяционного полинома Лагранжа, по оцениванию погрешности интерполяционного полинома.

В нашем случае для более полного раскрытия данной темы подробно проиллюстрировано само понятие интерполяции, далее интерполирование непосредственно гладкой функции и интерполирование гладкой функции в точке.


Список использованной литературы

1. Н.С.Габбасов. Некоторые применения производной. Наб.Челны, 1998г.

2. Я.С.Бугров, С.М.Никольский. Дифференциальное и интегральное исчисление. М.: «Наука», 1984г.

3. С.М.Никольский. Курс математического анализа. М.: «Наука», 1990г.

4. Л.Д.Кудрявцев. Краткий курс математического анализа. М.: «Наука», 1989г.

5. И.А.Марон. Дифференциальное и интегральное исчисление. М.: «Наука», 1970г.

6. А.А.Самарский. Введение в численные методы. М.: «Наука», 1987.


[1] Здесь Hn – это множество всех алгебраических многочленов степени n.

[2] На непрерывном отрезке и в точке

обозначили множество функции, имеющей производную по Тейлору m-го порядка.

(естественно,

Верно следующее соответствие:

здесь