Смекни!
smekni.com

Теория вероятностей (стр. 2 из 5)

Таким образом,

Р(A) = N(A)/N(W) = 36/120 = 0,3.

Б. Схема выбора, приводящая к размещениям

Если опыт состоит в выборе m элементов без возвращения, но с упорядочиванием их по мере выбора в последовательную цепочку, то различными исходами данного опыта будут упорядоченные m-элементные подмножества множества Е, отличающиеся либо набором элементов, либо порядком их следования. Получаемые при этом комбинации элементов (элементарные исходы) называются размещениями из n элементов по m, а их общее число N(W) определяется формулой:

Amn = Cmn×m! = n!/(n - m)! = n(n - 1)...(n - m + 1).


Если n = m, то опыт фактически состоит в произвольном упорядочивании множества Е, т.е. сводится к случайной перестановке элементов всего множества. Тогда N(W) = Ann = n!.

Пример 2. Группа, состоящая из 8 человек, занимает места за круглым столом в случайном порядке. Какова вероятность того, что при этом два определенных лица окажутся сидящими рядом?

Решение. Так как упорядочивается все множество из 8 элементов, то N(W) = A88 = 40320. Событию А благоприятствуют такие размещения, когда два отмеченных лица сидят рядом: всего 8 различных соседних пар мест за круглым столом, на каждой из которых отмеченные лица могут сесть двумя способами, при этом остальные 6 человек размещаются на оставшиеся места произвольно, поэтому по формуле о числе элементов прямого произведения множеств получаем N(A) = 2×8×6!. Следовательно Р(A) = N(A)/N(W) = 2/7.

В. Схема выбора, приводящая к сочетаниям с повторениями

Если опыт состоит в выборе с возвращением m элементов множества E = {e1, e2, ..., en}, но без последующего упорядочивания, то различными исходами такого опыта будут всевозможные m-элементные наборы, отличающиеся составом. При этом отдельные наборы могут содержать повторяющиеся элементы. Например, при m = 4 наборы {e1, e1, e2, e1} и {e2, e1, e1, e1} неразличимы для данного эксперимента, а набор {e1, e1, e3, e1} отличен от любого из предыдущих. Получающиеся в результате данного опыта комбинации называются сочетаниями с повторениями, а их общее число определяется формулой N(W) = Cmn+m-1.

Пример 3. В библиотеке имеются книги по 16 разделам науки. Поступили очередные четыре заказа на литературу. Считая, что любой состав заказанной литературы равновозможен, найти вероятности следующих событий: А - заказаны книги из различных разделов наук, В - заказаны книги из одного и того же раздела науки.

Решение. Число всех равновероятных исходов данного эксперимента равно, очевидно, числу сочетаний с повторениями из 16 элементов по 4, т.е. N(W)= C416+4-1 = C419.

Число исходов, благоприятствующих событию A, равно числу способов отобрать без возвращения четыре элемента из 16, поэтому Р(A) = N(A)/N(W) = C416/C419 » 0,47.

Число исходов, благоприятствующих событию В, равно числу способов выбрать один элемент из 16, поэтому Р(A) = N(A)/N(W) = C116/C419 » 0,004.

Г. Схема выбора, приводящая к размещениям с повторениями

Если выбор m элементов из множества E = {e1, e2, ..., en}, производится с возвращением и с упорядочиванием их в последовательную цепочку, то различными исходами будут всевозможные m-элементные наборы (вообще говоря, с повторениями), отличающиеся либо составом элементов, либо порядком их следования. Например, при m = 4 наборы {e1, e1, e2, e1}, {e2, e1, e1, e1} и {e1, e1, e3, e1} являются различными исходами данного опыта. Получаемые в результате различные комбинации называются размещениями, с повторениями, а их общее число определяется формулой

N(W)= nm.

Пример 4. Опыт состоит в четырехкратном выборе с возвращением одной из букв алфавита E = {а, б, к, о, м} и выкладывании слова в порядке поступления букв. Какова вероятность того, что в результате будет выложено слово «мама»?

Решение. Число элементов множества, равновероятных исходов равно числу размещений с повторениями из 5 элементов по 4 т.е. N(W)= 54. Слову «мама» соответствует лишь один возможный исход. Поэтому Р(A) = N(A)/N(W) = 1/54 » 0,0016.

Д. Схема упорядоченных разбиений

Пусть множество E состоит из m различных элементов. Рассмотрим опыт, состоящий в разбиении множества E случайным образом на s подмножеств E1, E2, ..., Es таким образом, что:

1. Множество Еi содержит ровно ni элементов, где i = 1, 2, ..., s.

2. Множества Еi упорядочены по количеству элементов ni.

3. Множества Еi, содержащие одинаковое количество элементов, упорядочиваются произвольным образом. Например, при n = 7, n1 = 2, n2 = 2, n3 = 3 разбиения {E1 = {e1, е2}, Е2 = {e3, е4}, Е3 = {e5, е6, e7}} и {E1 ={e3, е4}, Е2 ={e1, е2}, Е3 = {e5, е6, e7}} являются различными исходами данного опыта.

Число всех элементарных исходов в данном опыте определяется формулой

N(W) = n!/(n1! ×n2! × ... ×ns!).

Пример 5. Десять приезжих мужчин, среди которых Петров и Иванов, размещаются в гостинице в два трехместных и один четырехместный номер. Сколько существует способов их размещения? Какова вероятность того, что Петров и Иванов попадут в четырехместный номер?

Решение. Разбиения в данном опыте характеризуются следующими параметрами: s = 3, n = 10, n1 = 3, n2 = 3, n3 = 4. Тогда N(W) = 10!/(3!×3!×4!) = 4200.

Пусть событие А - Петров и Иванов попадут в одни четырехместный номер. Благоприятствующие событию А исходы соответствуют разбиениям со следующими параметрами: s = 3, n = 8, n1 = 3, n2 = 3, n3 = 2. Тогда N(A) = 8!/(3!×3!×2!) = 560. Искомая вероятность Р(A) = N(A)/N(W) = 560/4200 = 2/15.

4. Классическое определение вероятности

Введение этого понятия произошло не в результате однократного действия, а заняло длительный промежуток времени, в течении которого происходило совершенствование формулировки .Классическое определение вероятности было подготовлено исследованиями Граунта и Петти, результаты которых убедительно показали преимущества понятия частоты перед понятием численности. Понятие частоты, т.е. отношения числа опытов, в которых появлялось данное событие, к числу всех проведённых опытов, позволяет получить практические выводы, тогда как рассмотрение численностей оставляет исследователя в состоянии неопределённости.

Классическое определение вероятности (в весьма несовершенной форме) впервые появляется у Я.Бернулли, в его сочинении «Искусство предположений» (1713). В первой главе четвёртой части этой книги он писал: Вероятность же есть степень достоверности и отличается от неё, как часть от целого». В эту формулировку Я. Бернулли вкладывал современный смысл, что видно из его последующих слов: «Именно, если полная и безусловная достоверность, обозначаемая нами буквой α или 1(единицей),будет, для примера, предположена состоящий из пяти вероятностей, как бы частей, из которых три благоприятствуют существованию или осуществлению какого-либо события, остальные же не благоприятствуют, то будет говориться, что это событие имеет 3α/5 или 3/5 достоверности». В дальнейшем он писал об отношении числа благоприятствующих случаев к числу всех возможных, предполагая эти случаи равновозможными, но специально не оговаривая этого. Из этого высказываний следует, что Бернулли владел и статистическим понятием вероятности. Им было введено в рассмотрение и использование понятие вероятности случайного события как числа, заключённого между 0 и 1. Достоверному событию приписывалось единица (максимальное значение), а невозможному - нуль (минимальное значение). Было ясно сказано, что это число может быть определено двумя способами:1)как отношение числа случаев, благоприятствующих данному событию, к числу всех равновозможных случаев; 2)как частота события при проведении большого числа независимых испытаний. Можно сказать, что с этого момента начинается история теории вероятностей.

5. Геометрическая вероятность

В 1692 г.в Лондоне был издан английский перевод книги Х. Гюйгенса «О расчётах азартных играх».Переводчик книги – математик , врач и сатирик

Д.Арбутнов(1667-1735) добавил несколько задач, среди которых оказалась задача совсем иной природы, по сравнению с теми, которые рассматривались автором. Задача Арбутнота состояла в следующем: на плоскость наудачу бросают прямоугольный параллелепипед с рёбрами, равными а, в, с; как часто параллелепипед будет выпадать гранью ав? Решение задачи дано Т.Симпсоном (1710-1761) в книге «Природа и закон случая» (1740). Им предложена следующая идея решения. Опишем около параллелепипеда сферу и спроектируем из центра на её поверхность все рёбра, боковые грани и основания. В результате поверхность сферы будет разбита на шесть непересекающихся областей, соответствующих граням параллелепипеда. Симпсон подвёл итог: « Нетрудно заметить, что определённая часть сферической поверхности, ограниченная траекторией, описанной таким образом радиусом, будет находится в таком же отношении к общей площади поверхности , как вероятность появления некоторой грани к единице». Сказанное в полной мере выражает принцип разыскания геометрических вероятностей: вводится мера множества благоприятствующих событию случаев и рассматривается её отношение к мере множества всех возможных случаев. В данном случае полная мера сводится к площади поверхности шара.

Французский естествоиспытатель Бюффон (1707-1788),член Парижской академии наук (1733) и почётный член Петербургской академии наук (1766), дважды публиковал работы, посвящённые геометрическим вероятностям (1733,1777).Он рассматривал следующие задачи: 1)пол разграфлен на одинаковые фигуры (прямоугольники); на пол бросается монета, диаметр которой 2r меньше каждой из сторон прямоугольника, и монета целиком укладывается внутрь фигуры; чему равна вероятность того, что брошенная наудачу монета пересечёт одну или две стороны фигуры? 2) на плоскость, разграфленную равноотстоящими параллельными прямыми, наудачу бросается игла; один игрок утверждает, что игла пересечёт одну из прямых, другой – что не пересечёт; определить вероятность выигрыша каждого игрока;3) тот же вопрос для случая, когда игла бросается на плоскость, разграфленную на квадраты. После Бюффона задачи на геометрические вероятности стали систематически включатся в монографии и учёбные пособия по теории вероятностей.