Смекни!
smekni.com

Волоконно-оптические датчики температуры на основе решеток показателя преломления (стр. 3 из 3)

Рис. 34. Схема экспериментального стенда.

Рис. 35. Волоконно-оптический детектор образования конденсата.

В состав экспериментального стенда входят:

суперлюминесцентный диод (СЛД);

чувствительный элемент;

волоконный разветвитель;

термопреобразователь сопротивления;

двухкаскадный термоэлектрический модуль;

блок питания ТЭМ;

система охлаждения горячей стороны ТЭМ;

фотоприёмник;

микропроцессорный блок управления и индикации;

камера и газовая коммутация.

4.1.1. Чувствительный элемент

Если оптическое волокно, в котором распространяется оптическое излучение, сколоть под прямым углом, то основная часть излучения будет выходить из волокна, но порядка 3,5% излучения (в случае воздуха), будет отражаться от скола обратно. Отражённую мощность можно измерить, поставив в оптическую схему до скола волокна разветвитель. При образовании на торце волокна плёнки конденсата происходит изменение показателя преломления в приповерхностной области, вследствие чего изменяется мощность отражённого сигнала (рисунок 36).

Среди многообразия типов оптического волокна, наиболее подходящим с точки зрения применения в качестве детектора образоваия конденсата является стандартное телекоммуникационное волокно типа SMF-28. Улучшить характеристики прибора можно, используя более тонкое оптоволокно, за счет чего уменьшится градиент температуры по его сколу.

4.1.4. Охлаждение чувствительного элемента

Одной из важнейших задач при создании гигрометра точки росы является обеспечение контролируемого охлаждения чувствительного элемента. Среди широко применяемых для решения этой задачи способов (компрессионный, криогенный и др.) термоэлектрическое охлаждение предствляется наиболее перспективным с точки зрения точности, доступности и экономичности.

Термоэлектрические охлаждающие устройства (ТОУ) имеют ряд принципиальных преимуществ перед обычными системами принудительного охлаждения: компактность, легкость регулировки температуры, малую инерционность. ТОУ обладают удобной и гибкой характеристикой и несложным переводом из режима охлаждения в режим нагревания. Они отличаются простотой управления, возможностью точного регулирования температуры, бесшумностью, хорошими массогабаритными показателями, высокой надежностью работы и имеют практически неограниченный срок службы.

ТОУ — это устройства для переноса тепловой энергии от теплопередатчика с низкой температурой к теплоприемнику с высокой температурой, действие которых основано на эффекте Пельтье. Основным функциональным узлом ТОУ является термоэлектрическая батарея, набранная из электрически соединенных между собой термоэлементов. При прохождении электрического тока (от внешнего источника) через термоэлемент возникает разность температур между горячим и холодным спаями термоэлемента. При этом на холодном спае теплота поглощается из охлаждаемого вещества и передается горячему спаю и далее в окружающую среду.

Охлаждение горячего спая термоэлектрического модуля является очень важной задачей, поскольку от эффективности охлаждения зависит максимальная разность температур на сторонах модуля. Для решения этой задачи решено было обратиться к другой области техники, где активно используется охлаждение – компьютерам. Наиболее мощные компьютерные кулеры на тепловых трубах способны отводить от небольшой поверхности (размеры современных процессоров сравнимы с размерами ТЭМ) значительную тепловую мощность. При этом охлаждение остаётся пассивным (вентилятор является опциональным). Кроме того, основание хороших кулеров как правило делают из меди, которая легко паяется. Такой вид охлаждения надёжен, относительно недорог и с ним имеется возможность создания переносного варианта прибора.

4.2. Теоретиическая модель функционирования чувствительного элемента

Так как используемое волокно является одномодовым в диапазоне используемых длин волн, падение света на границу раздела можно считать нормальным, а значит, для определения коэффициента отражения можно воспользоваться формулой Френеля:

, (28)

где R – коэффициент отражения, n1 и n2 – показатели преломления сред.

Расчетные данные по этой формуле хорошо сходятся с измеренными значениями в различных жидких средах.

Таблица 10. Мощности сигналов, отражённых от сколотого конца волокна, при погружении волокна в жидкости с различными показателями преломления. Источник излучения – СЛД.

Среда Показатель преломления Коэффициент отражения (расчёт) Отражённая мощность (расчёт), нВт Отражённая мощность (эксперимент), нВт
кварц 1,46 - - -
воздух 1 0,035 334,8 334,8
деионизованная вода 1,33 2,5∙10-3 23,9 24,5
этиловый спирт 1,36 1,26∙10-3 12,1 9,8
3-хлорэтилен 1,48 4,6∙10-5 0,4 1,1

Для 3-хлорэтилена несоответствие вызвано ограничением минимальной измеряемой мощности прибора 1 нВт, и, соответственно, большой погрешностью измерений вблизи этого значения.

Результаты экспериментов показывают, что выбранная модель функционирования детектора образования конденсата соответствует действительности.

4.3. Использование скола одномодового волокна в качестве чувствительного элемента

Экспериментальные измерения показали, что температурная зависимость мощности сигнала, отражённого от охлаждаемого скола волокна, имеет характерный перегиб, а температура, при которой он происходит, кореллирует со значением точки инея воздуха подаваемого в камеру. Для проведения количественных измерений величины наблюдаемых изменений уровня отражённого сигнала при изменениях влажности газа и температуры скола волокна, были измерены абсолютные значения оптической мощности как СЛД (185 мкВт), так и выхода оптического разветвителя (9566 нВт), направляющего излучение СЛД на охлаждаемый скол волокна в рабочей части детектора.

Перед каждой фазой эксперимента производился нагрев чувствительной части до 70°С с целью испарения остатков влаги из чувствительной области. Затем производилось медленное охлаждение детектора конденсата со скоростью 1°С/мин. При этом контролировался отражённый от скола волокна сигнал.

Проведена серия экспериментов, в ходе которых использовался воздух с различным влагосодержанием, которое точно задавалось генератором влажного газа. Влагосодержание может характеризоваться значением точки инея – максимальной температуры прилегающего к охлаждаемой поверхности слоя газа, при которой на этой поверхности начинает образовываться плёнка инея. Таким образом, наиболее сухому газу соответствует наименьшее значение точки инея. На рисунках 3-5, приведены зависимости отражённого сигнала (жирная линия) и температуры скола волокна (тонкая линия) от времени при подаче в камеру влажного воздуха с различным влагосодержанием, характеризуемым тремя значениями точки инея: -8,8°С (рисунок 3), -13,9°С (рисунок 4) и -30,3°С (рисунок 5). Наблюдается хорошее соответствие температуры характерного излома на температурной зависимости мощности отражённого сигнала и точки инея, задаваемой генератором влажного газа.

Рис.43. Зависимости отражённого сигнала (жирная линия) и температуры скола волокна (тонкая линия) от времени при подаче в камеру воздуха с точкой инея -30,3°С.

При измерении точки росы газа с заданным влагосодержанием до момента образования конденсата наблюдалось плавное уменьшение оптического сигнала. Оно вызвано температурной зависимостью показателя преломления кварца, а также механическими напряжениями, вызванными разницей температурных коэффициентов линейного расширения сплава Розе, которым волокно припаяно к ТЭМ. В момент, когда толщина плёнки конденсата достигает порядка длины волны излучения, сигнал начинает расти, а далее изменяется по синусоидальному закону. Это вызвано тем, что появляется часть света, вышедшего из волокна, которая отражается от границы раздела конденсат-воздух и возвращается обратно в волокно. Таким образом, плёнка конденсата образует интерферометр Фабри-Перо, поэтому при изменении температуры и толщины плёнки, происходит периодические колебания сигнала.

Максимальная погрешность измерения сорбционно-емкостного преобразователя относительной влажности ДВ2ТСМ в диапазоне от 0 до 10% составляет ±0,095 показания прибора [72]. Для точки инея -30°С это составит ±0,8°С. Погрешность термопреобразователя сопротивления составляет ±0,1°С. На основании этого следует, что результаты измерения точки инея укладываются в пределы погрешности измерительного оборудования.

5. Заключение

Волоконно-оптические датчики для контроля температуры обладают целым рядом преимуществ по сравнению с другими типами подобных устройств [4]. Такой датчик незаменим во многих направлениях современной промышленности. Пока у этих устройств нет аналогов, которые могли бы так же успешно применяться в газовой промышленности, различного рода печах и сушильных установках, например, в СВЧ, турбинах и генераторах, двигателях, различных областях медицины и инженерии, аэронавтике и космонавтике [3]. Основная проблема эксплуатации ВОД датчиков температуры заключается в необходимости дорогостоящего оборудования для снятия и обработки показаний датчиков и малом быстродействии; вместе с тем их использование является относительно недорогим для конечных потребителей за счет устойчивости к излучениям и коррозии, малому потреблению энергии и определенности получаемых данных.

Список литературы

1. В.А. Гуртов «Оптоэлектроника и волноводная оптика», ПетрГу, 2005.

2. С.А. Васильев, О.И. Медведков, И.Г. Королев, А.С. Божков, А.С. Курков, Е.М. Дианов, "Волоконные решетки показателя преломления и их применения", Квантовая Электроника, 35, 12, 1085-1103, 2005

3. Jose Miguel Lopez-Higuera «HANDBOOK OF OPTICAL FIBRE SENSING TECHNOLOGY», John Wiley & Sons Ltd, 2002.

4. «Волоконно-оптические датчики», под ред Э. Удда, Техносфера, 2008.

5. А.Н. Пихтин «Оптическая и квантовая электроника», Высш. шк, 2001.

6. И.В. Рубцов «Волоконно-оптический термометр как новый элемент мониторинга строительных сооружений», Технологии строительства 1(35)/2005.

7. http://window.edu.ru/window_catalog/pdf2txt?p_id=18798&p_page=6

8. http://www.opticsinfobase.org/abstract.cfm?&uri=ol-24-24-1826