Смекни!
smekni.com

Некоторые приложения определенного интеграла в математике (стр. 1 из 2)

Некоторые приложения определенного интеграла в математике

Курсовая работа студента гр. МТ-21

Нургалиев А.З.

Павлодарский университет

Павлодар 2005 год.

1. Введение.

В курсовой работе рассмотрены вопросы некоторого приложения определенного интеграла. Цель: изучить актуальность применения определенного интеграла и широту его использования в математике, оценить ее практическую и теоретическую значимость.

При разработки данного вопроса, был также рассмотрен несобственный интеграл, как частный случай определенного интеграла, его определение и виды.

2. Определенный интеграл.

Пусть функция f(x) задана в некотором промежутке [a,b]. Разобьем этот промежуток произвольным образом на части, вставив между a и b точки деления:

. Наибольшую из разностей

(i=0,1,2, …,n-1) будем впредь обозначать через λ.

Возьмем в каждом из частных промежутков

по произволу точку

и составим сумму

.

Говорят, что сумма σ при λ→0 имеет (конечный) предел I, если для каждого числа ε>0 найдется такое число δ>0, что, лишь только λ<δ (т.е. основной промежуток разбит на части, с длинами

), неравенство

выполняется при любом выборе чисел

.

Записывают это так:

. (1)

Этому определению «на языке ε-δ», как обычно, противопоставляется определение «на языке последовательностей». Представим себе, что промежуток [α,b] последовательно разбивается на части, сначала одним способом, затем – вторым, третьим и т.д. Такую последовательность разбиений промежутка на части мы будем называть основной, если соответствующая последовательность значений

сходится к нулю.

Равенство (1) можно понимать теперь и в том смысле, что последовательность значений суммы σ, отвечающая любой основной последовательности разбиений промежутка, всегда стремится к пределу I, как бы ни выбирать при этом

.

Второе определение позволяет перенести основные понятия и предложения теории пределов и на этот новый предел.

Конечный предел I суммы σ при λ→0 называется определенным интегралом функции f(x) в промежутке от α до b и обозначается символом

;

в случае существования такого предела функции f(x) называется интегрируемой в промежутке [α,b].

Числа α и b носят название, соответственно, нижнего и верхнего пределов интеграла. При постоянных пределах определенный интеграл представляет собой постоянное число.

3. Несобственные интегралы.

Пусть f непрерывна на луче на луче

и F(x) – первообразная для f на луче
. Если существует

,

то этот предел обозначается

и называется сходящимся несобственным интегралом.

Несобственные интеграл вида

и аналогичный интеграл
получаются при замене в интеграле Римана с помощью функции t=t(x), непрерывной и дифференцируемой на полуинтервале [a,b) ( или (a,b] ) и являющейся бесконечно большой определенного знака при
(или
).

Здесь существенно, что особой точкой функции t является именно конец (левый или правый) отрезка [a,b]. Если особой точкой t(x) (как в разобранном выше примере) является внутренняя точка с интервала (a,b), то

разбивается на
и
, и переход к аргументу t делается раздельно в каждом из слагаемых.

Пример.

Вычислим

.

Пусть

,

Другим видом несобственного интеграла является интеграл

, если функция f не ограничена на
, но непрерывна на
при любом
,
(или на
), т.е. не ограничена в окрестности точки
(точки b).

Этот интеграл существует (сходится), если существует:

Пример.

, если

f(x) непрерывна на [0,1]. После замены

получаем

.

не ограничена на [0,1], т.к. первообразная функция
на
при любом
,
равна:
, то

.

Несобственный интеграл может появится и при интегрировании по частям.

,

т.е.

,

где

- первообразная для arcsinx на [0,1].

4.1.Формула Валлиса.

Для вывода формулы Валлиса необходимо вычислить следующий интеграл:

(при натуральном m).

Интегрируя по частям, найдём

.

Двойная подстановка обращает в нуль. Заменяя

через
, получим

откуда рекуррентная формула:

,

по которой интеграл

последовательно приводится к
и
. Именно, при m=2n имеем

,

если же m=2n+1, то

.

Такие же точно результаты получаются и для

.

Для более короткой записи найденных выражений воспользуемся символом m!!(произведение натуральных чисел, не превосходящих m и одной с ним чётности). Тогда можно будет написать


(1)

Из формулы (1) можно вывести знаменитую формулу Валлиса (J. Wallis).