Смекни!
smekni.com

Построение математической модели оптимального управления обеспечивающего мягкую посадку при (стр. 2 из 3)


Составим гамильтониан Н:

;

.

Оптимальному управлению соответствует максимум функции Гамильтона в заданной области возможных управлений. Причем этот максимум равен нулю.

То есть нужно добиться максимума этой функции, меняя u1. Это и будет оптимальное управление.

Для функций ψi тоже получим сопряженные уравнения, которые имеют вид

:

– так как функция не зависит от х0,

следовательно производная равна нулю;

– аналогично, так как функция не зависит от х1.

Итак, нужно найти максимум гамильтониана:



Функция переключения:

Используя для вычислений Mathcad, получим оптимальное управление:

Таким образом оказалось, что оптимальное управление должно осуществляться на предельных ресурсах. То есть либо двигатель должен быть совсем выключен (при Ku<0), либо включен на максимальную мощность (при Ku>0).

Посмотрим, как меняется функция переключения Кu во времени:

;

Для определения ψ1 и ψ2 решаем сопряженные уравнения:

, следовательно, ψ1 = const, обозначим ψ11.

, следовательно,
, где c2 = const.

Итак,


Масса КА всегда положительна, а с=3000 = const – величина постоянная, поэтому производная

имеет всегда постоянный (один и тот же) знак. То есть величина Ku либо всё время монотонно возрастает, либо всё время монотонно убывает. А это означает, что она может пройти через ноль только один раз.

Рассмотрим четыре возможных случая:

а) Ku>0 для всех

;

б) Ku<0 для всех

;

в) Ku>0 для

, Ku<0 для
;

г) Ku<0 для

, Ku>0 для
.

В случаях б) (когда двигатель КА выключен на всем протяжении посадки) и в) (когда двигатель включен на максимальную мощность до какого-то момента времени t=t*, а затем полет происходит с выключенным двигателем до самой посадки) – говорить о мягкой посадке не приходится. Эти варианты означают падение КА на планету. Поэтому оптимальными (и вообще допустимыми) их считать нельзя.

Следовательно, остаются два реализуемых варианта – а) и г). И оптимальное управление предполагает либо всё время включенный на максимальную мощность двигатель, либо полет с выключенным двигателем до какого-то момента t=t*, а затем полет с двигателем, включенным на максимальную мощность до момента посадки. Естественно, что во втором случае (г) расход топлива меньше, так как часть пути проделывается с выключенным двигателем.

Поэтому оптимальным управлением в данной ситуации можно считать полет с выключенным двигателем, затем происходит включение двигателя и полет продолжается с двигателем, включенным на максимальную мощность.

Итак, оптимальному управлению соответствует

На первом участке полета, на котором u1=0:


;
;
;

;

;

.

Рассмотрим второй участок полета u1=7,083:

Зададимся условием, что при t=t* (в момент включения двигателя):

;

;

.

На отрезке полета со включенным двигателем:

;

так как

, запишем:

.

Теперь, зная х3, можно выразить х2:

.

Теперь, зная х2 выразим х1:

;

На отрезке пути h(t):

В момент посадки t=T высота и скорость должны быть равны нулю, то есть

и
. На основании этого утверждения приравняем х1(T) и х2(Т) нулю и получим таким образом два уравнения относительно t* и T. Таким образом, краевая задача у нас свелась к системе, состоящей из двух нелинейных уравнений относительно двух неизвестных t* и Т: