Смекни!
smekni.com

Матричный анализ (стр. 4 из 5)

ЧТД.

Опишем следующие свойств компонентных матриц, которые в некоторой степени обобщают свойства сопровождающих матриц.

Теорема. Компонентные матрицы

обладают следующими свойствами:

1.

2.

3.

4.

.

Замечание. Для того, чтобы найти компонентные матрицы для f(x) определенной на спектре матрицы А необходимо и достаточно знать базисные многочлены, входящие в интерполяционный многочлен, однако нахождение интерполяционного многочлена f(x) связано с некоторыми трудностями, а поэтому будем вычислять компонентные матрицы подбирая соответствующим образом системы функций.

Пример: Найти компоненты для матрицы

.

.

Пусть f(x) определена на спектре А, тогда согласно спектральной теореме

.

1. f(x)=1

E=1Z11+0Z12+1Z21=Z11+Z21

2. f(x)=x-4

A-4E=0Z11+1Z12+(-2)Z21=Z12-2Z21

3. f(x)=(x-4)2

(A-4E)2=4Z21

.

Таким образом, для любой функции f(x), определенное на спектре матрицы А

.

Пример 2.

Найти компоненты для матрицы

.

Найдем минимальный многочлен матрицы А.

1. f(x)=1

E=Z11+Z21+Z31

2. f(x)=x+1

(A+E)=2Z21+Z31+Z12

3. f(x)=(x+1)2

(A+E)2=4Z21+Z31

4. f(x)=x-1

A-E=-2Z11+Z12-Z31

1. f(x)=1 E=Z11+Z21+Z31

2. f(x)=x+1 A+E=Z11Z22+2Z31

3. f(x)=(x+1)2 (A+E)2=Z11+4Z31

4. f(x)=x-1 (A-E)=-Z11-2Z21+Z22

Z31=A

-Z22=(A+E)2-E-3A

Z12=Z22

Z11=(E-A)-Z22


6.Определенные матрицы.

Эрмитовы и квадратичные матрицы.

Пусть А – эрмитова матрица (А*=А).

Рассмотрим функцию h(x) – действительная функция комплексного аргумента.

Рассмотрим:

DF. Функция

, где А – эрмитова матрица, называется эрмитовой формой от n переменных x1, …, xn, где А – матрица эрмитовой формы.

Очевидно, что если А – действительная симметрическая матрица, то в этом случае получаем квадратичную форму

.

Для каждой эрмитовой (квадратичной) формы инвариантами являются: ранг (число не нулевых коэффициентов в квадратичной форме нормального вида совпадающих с рангом матрицы А), p (индекс) – число положительных коэффициентов в квадратичной форме нормального вида, оно совпадает с числом положительных собственных значений, сигнатура. Эти числа r, p, гр-r не зависят от тех преобразований, которые совершаются над данными формами.

В дальнейшем ограничимся рассмотрением только квадратичных форм. Нас интересуют 2 семейства матриц.

DF. Действительная симметрическая матрица А называется положительно определенной, если

для
.

DF. Действительная симметрическая матрица А называется неотрицательно определенной, если

для
.

Оба типа матриц относятся к классу определенных матриц. Заметим, что положительно определенная матрица невырожденная, т.е. если предположить, что она вырожденная, то

,
, что противоречит условию.

Теорема № 1. Действительная симметрическая матрица n-го порядка будет определенной ранга

тогда и только тогда , когда она имеет r положительных собственных значений, а остальные (n-r) – собственные значения равны 0.

Теорема № 2. Действительная симметрическая матрица положительна определена тогда и только тогда, когда все ее главные миноры положительны.

Теорема № 3. Действительная симметрическая матрица положительно определена тогда и только тогда, когда все ее главные миноры положительны.

7.Неотрицательные матрицы.

DF. Матрица

называется неотрицательной, если каждый ее элемент положителен.

Квадратные матрицы такого типа возникают во множестве задач и это определяющее свойство приводит к сильным результатам об их строении. Теорема Фробениуса-Перона является основным результатом для неотрицательных матриц.

Пусть матрицы

. Будем говорить, что
, если
б в частности A>B, если
.

Вспомним матрицу перестановки

, т.е. матрицы перестановки обязательно ортогональны. Произведение
приводит к перестановке столбцов матрицы А.

DF. При

матрица
называется приводимой матрицей, если существует такая матрица перестановки Р, что
совподает с матрицей
, где А11, А12, А22 – квадратные матрицы меньшего чем n порядка. Если матрица Р не существует, то матрица А называется неприводимой.

Понятие приводимости имеет значение при решении матричных уравнений

, ибо если Ф – приводима, то осуществив замену переменных, которую подсказывают равенства
, получаем

, где
,
.

и решаем матричное уравнение с матрицей более низкого порядка. Затем,
и решаем матричное уравнение. Таким образом, если А – приводима, то решение уравнения высокого порядка сводится к решению уравнений более низкого порядка, при чем собственные значения матриц А11 и А22 в своей совокупности составляет множество значений матрицы А.