Смекни!
smekni.com

Использование цепей Маркова в моделировании социально экономических процессов (стр. 2 из 3)

Если из состояния

система может перейти в состояние
с положительной вероятностью за конечное число шагов, то говорят, что
достижимо из
.

Состояние

называется существенным, если для каждого состояния
, достижимого из
,
достижимо из
. Если же для хотя бы одного j
достижимо из
, а
не достижимо из
, то
- несущественное состояние.

§3. Области применения цепей Маркова.

Цепи Маркова служат хорошим введением в теорию случайных процессов, т.е. теорию простых последовательностей семейств случайных величин, обычно зависящих от параметра, который в большинстве приложений играет роль времени. Она предназначена, главным образом, для полного описания как долговременного, так и локального поведения процесса. Приведем некоторые наиболее изученные в этом плане вопросы.

Броуновское движение и его обобщения – диффузионные процессы и процессы с независимыми приращениями. Теория случайных процессов способствовала углублению связи между теорией вероятностей, теорией операторов и теорией дифференциальных уравнений, что, помимо прочего, имело важное значение для физики и других приложений. К числу приложений относятся процессы, представляющие интерес для актуарной (страховой) математики, теории массового обслуживания, генетики, регулирования дорожного движения, теории электрических цепей, а также теории учета и накопления товаров.

Мартингалы. Эти процессы сохраняют достаточно свойств цепей Маркова, чтобы для них оставались в силе важные эргодические теоремы. От цепей Маркова мартингалы отличаются тем, что когда текущее состояние известно, только математическое ожидание будущего, но необязательно само распределение вероятностей, не зависит от прошлого. Помимо того, что теория мартингалов представляет собой важный инструмент для исследования, она обогатила новыми предельными теоремами теорию случайных процессов, возникающих в статистике, теории деления атомного ядра, генетике и теории информации.

Стационарные процессы. Самая старая из известных эргодических теорем, как отмечалось выше, может быть интерпретирована как результат, описывающий предельное поведение стационарного случайного процесса. Такой процесс обладает тем свойством, что все вероятностные законы, которым он удовлетворяет, остаются инвариантными относительно сдвигов по времени. Эргодическую теорему, впервые сформулированную физиками в качестве гипотезы, можно представить как утверждение о том, что при определенных условиях среднее по ансамблю совпадает со средним по времени. Это означает, что одну и ту же информацию можно получить из долговременного наблюдения за системой и из одновременного (и одномоментного) наблюдения многих независимых копий той же самой системы. Закон больших чисел есть не что иное, как частный случай эргодической теоремы Биркгофа. Интерполяция и предсказание поведения стационарных гауссовских процессов, понимаемых в широком смысле, служат важным обобщением классической теории наименьших квадратов. Теория стационарных процессов – необходимое орудие исследования во многих областях, например, в теории связи, которая занимается изучением и созданием систем, передающих сообщения при наличии шума или случайных помех.

Марковские процессы (процессы без последействия) играют огромную роль в моделировании систем массового обслуживания (СМО), а также в моделировании и выборе стратегии управления социально-экономическими процессами, происходящими в обществе. В качестве примера рассмотрим управляемые цепи Маркова.

§4. Управляемые цепи Маркова. Выбор стратегии.

Завод по изготовлению телевизоров, находясь в состоянии 1, может увеличить спрос путем организации рекламы. Это требует добавочных затрат и уменьшает доход. В состоянии 2 завод может увеличить вероятность перехода в состояние 1 путем увеличения затрат на исследования. Выделим две стратегии. Первая состоит в отказе от затрат на рекламу и исследования, а вторая - в согласии на них. Пусть матрицы переходных вероят­ностей и матрицы доходов для данных стратегий имеют вид:

В рассмотренной ситуации имеет место управляемая цепь Мар­кова. Управление соответствует выбору стратегии.

Пусть каждому состоянию

соответствует ко­нечное множество
решений (или альтернатив), элементы которого обозначим номерами
. Пространством стратегий К назы­вается прямое произведение множеств решений
.

Пусть в i-м состоянии имеется не одно, а

множеств пере­ходных вероятностей
. При
имеем случай неуправляемой цепи Маркова. Если система находится в состоянии
и принимается ре­шение
то

- она получает доход

;

- ее состояние в следующий момент времени определяется вероят­ностью

, где
- вероятность того, что система из состояния
при выборе решения
перейдет в состояние
.

Таким образом, смысл

-го решения в i-м состоянии заклю­чается в выборе одного набора переходных вероятностей
из
возможных. Предполагается, что доход
ограничен при всех
и
.

Кроме того,

,
при всех
и
.

Управляемой цепью Маркова называется конструкция, зада­ваемая параметрами

, где К-решения, Р-вероятности переходов, r-доходы. Доход, полученный за несколько шагов, является случайной величиной, зависящей от начального состоя­ния и принимаемых в каждый момент времени решений.

Назовем решение, принимаемое в конкретный момент, частным управлением. Тогда управление есть последовательность решений в моменты n = 1, 2, ... Качество управления можно оценить сред­ним суммарным доходом (при конечном времени) или среднем дохо­дом в единицу времени (при бесконечном времени).

Пусть

(2)

Стратегией

называется последовательность решений