Смекни!
smekni.com

Кратные интегралы (стр. 3 из 3)

Подобным образом можно проектировать части поверхности на координатные плоскости Оxzи Оyz. Получим два других поверхностных интеграла 2-го рода:

и
.

Рассмотрев сумму таких интегралов по одной и той же поверхности соответственно от функций P(x, y, z), Q(x, y, z), R(x, y, z), получим поверхностный интеграл второго рода общего вида:

(35)

Если D, D΄ и D΄΄ - проекции поверхности S на координатные плоскости Оху, Oxz и Oyz, то

(36)

Связь между тройным интегралом по трехмерной области V и поверхностным интегралом 2-го рода по замкнутой поверхности S, ограничивающей тело V, задается формулой Гаусса-Остроградского:

(37)

где запись «S+» означает, что интеграл, стоящий справа, вычисляется по внешней стороне поверхности S.

Формула Стокса устанавливает связь между поверхностным интегралом 1-го рода по поверхности σ и криволинейным интегралом 2-го рода по ограничивающему ее контуру λ с учетом ориентации поверхности:

(38)

2.3 Геометрические и физические приложения

1) Длина кривой.

Если подынтегральная функция f(x, y, z) ≡ 1, то из определения криволинейного интеграла 1-го рода получаем, что в этом случае он равен длине кривой, по которой ведется интегрирование:

(39)

2) Масса кривой.

Считая, что подынтегральная функция γ (x, y, z) определяет плотность каждой точки кривой, найдем массу кривой по формуле

(40)

Пример 6.

Найти массу кривой с линейной плотностью

заданной в полярных координатах уравнением ρ = 4φ, где

Решение.

Используем формулу (40) с учетом того, что кривая задана в полярных координатах:

3) Моменты кривой l:

- (41)

- статические моменты плоской кривой l относительно осей Ох и Оу;

- (42)

- момент инерции пространственной кривой относительно начала координат;

- (43)

- моменты инерции кривой относительно координатных осей.

4) Координаты центра масс кривой вычисляются по формулам

. (44)

5) Работа силы

, действующей на точку, движущуюся по кривой (АВ):

, (45)

Пример 7.

Вычислить работу векторного поля

вдоль отрезка прямой от точки А(-2;-3;1) до точки В(1;4;2).

Решение.

Найдем канонические и параметрические уравнения прямой АВ:

6) Площадь криволинейной поверхности, уравнение которой

z = f(x, y), можно найти в виде:

(46)

(Ω – проекция S на плоскость Оху).

7) Масса поверхности

(47)

Пример 8.

Найти массу поверхности

с поверхностной плотностью γ = 2z2 + 3.

Решение.

На рассматриваемой поверхности

Тогда

Проекцией D этой поверхности на координатную плоскость Оху является полукольцо с границами в виде дуг концентрических окружностей радиусов 3 и 4.

Применяя формулу (47) и переходя к полярным координатам, получим:

8) Моменты поверхности:

(48) статические моменты поверхности относительно координатных плоскостей Oxy, Oxz, Oyz;

(49)

- моменты инерции поверхности относительно координатных осей;

- (50)

- моменты инерции поверхности относительно координатных плоскостей;

- (51)

- момент инерции поверхности относительно начала координат

9) Координаты центра масс поверхности:

. (52)

Список используемой литературы

1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М.: Наука, 1999.

2. Кудрявцев Л.Д. Краткий курс математического анализа. М.: Наука, 2000.

3. Ильин В.А., Позняк Э.Г. Математический анализ. М.: Наука, 1999.

4. Смирнов В.И. Курс высшей математики.- Т.2. М.: Наука, 2005.

5. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. М.: Наука, 2001.

6. Пискунов Н.С. Дифференциальное и интегральное исчисление. – Т.2. М.: Наука, 2001.

7. Сборник задач по математике для втузов. Специальные разделы математического анализа (под редекцией А.В.Ефимова и Б.П.Демидовича). – Т.2. М.: Наука, 2004.

8. Мышкис А.Д. Лекции по высшей математике. М.: Наука, 2003.

9. Титаренко В.И., Выск Н.Д. Кратные, криволинейные и поверхностные интегралы. Теория поля. М.: МАТИ, 2006.